
The Cassowary Linear Arithmetic Constraint Solving

Algorithm: Interface and Implementation

Greg J. Badros Alan Borning

Technical Report UW-CSE-98-06-04
Department of Computer Science and Engineering

University of Washington
Box 352350, Seattle, WA 98195-2350 USA

{gjb,borning}@cs.washington.edu

29 June 1998
Revised 27 July 1999

Abstract

Linear equality and inequality constraints arise naturally in specifying many aspects of user
interfaces, such as requiring that one window be to the left of another, requiring that a pane
occupy the leftmost 1/3 of a window, or preferring that an object be contained within a rect-
angle if possible. Current constraint solvers designed for UI applications cannot efficiently
handle simultaneous linear equations and inequalities. This is a major limitation. We describe
Cassowary—an incremental algorithm based on the dual simplex method that can solve such
systems of constraints efficiently.

This informal technical report describes the latest version of the Cassowary algorithm. It is
derived from the paper “Solving Linear Arithmetic Constraints for User Interface Applications”
by Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao [7], published in the UIST’97
Proceedings. The UIST paper also contains a description of QOCA, a closely related solver
that finds least-squares solutions to linear constraints. This technical report, which is intended
to be self-contained, includes material on Cassowary from the UIST paper, plus a description
of the Java, C++, and Smalltalk implementations and their interfaces, along with additional
details, corrections, and clarifications.

An earlier technical report also discussed QOCA and the similarities between Cassowary and
that algorithm [6].

1 Introduction

Linear equality and inequality constraints arise naturally in specifying many aspects of user inter-
faces, in particular layout and other geometric relations. Inequality constraints, in particular, are
needed to express relationships such as “inside,” “above,” “below,” “left-of,” “right-of,” and “over-
laps.” For example, if we are designing a Web document we can express the requirement that figure1

be to the left of figure2 as the constraint figure1.rightSide ≤ figure2.leftSide.

1

It is important to be able to express preferences as well as requirements in a constraint system. One
use is to express a desire for stability when moving parts of an image: things should stay where they
were unless there is some reason for them to move. A second use is to process potentially invalid
user inputs in a graceful way. For example, if the user tries to move a figure outside of its bounding
window, it is reasonable for the figure just to bump up against the side of the window and stop,
rather than giving an error. A third use is to balance conflicting desires, for example in laying out
a graph.

Efficient techniques are available for solving such constraints if the constraint network is acyclic.
However, in trying to apply constraint solvers to real-world problems, we found that the collection
of constraints was often cyclic. This sometimes arose when the programmer added redundant con-
straints — the cycles could have been avoided by careful analysis. However, this is an added burden
on the programmer. Further, it is clearly contrary to the spirit of the whole enterprise to require
programmers to be constantly on guard to avoid cycles and redundant constraints; after all, one of
the goals in providing constraints is to allow programmers to state what relations they want to hold
in a declarative fashion, leaving it to the underlying system to enforce these relations. For other
applications, such as complex layout problems with conflicting goals, cycles seem unavoidable.

1.1 Constraint Hierarchies and Comparators

Since we want to be able to express preferences as well as requirements in the constraint system, we
need a specification for how conflicting preferences are to be traded off. Constraint hierarchies [4]
provide a general theory for this. In a constraint hierarchy each constraint has a strength. The
required strength is special, in that required constraints must be satisfied. The other strengths all
label non-required constraints. A constraint of a given strength completely dominates any constraint
with a weaker strength. In the theory, a comparator is used to compare different possible solutions
to the constraints and select among them.

Within this framework a number of variations are possible. One decision is whether we only compare
solutions on a constraint-by-constraint basis (a local comparator), or whether we take some aggregate
measure of the unsatisfied constraints of a given strength (a global comparator). A second choice is
whether we are concerned only whether a constraint is satisfied or not (a predicate comparator), or
whether we also want to know how nearly satisfied it is (a metric comparator. (Constraints whose
domain is a metric space, for example the reals, can have an associated error function. The error in
satisfying a constraint cn is 0 if and only if the constraint is satisfied, and becomes larger the less
nearly satisfied is the constraint.)

As recognized for the Indigo solver [2], for inequality constraints it is important to use a metric
rather than a predicate comparator. Thus, plausible comparators for use with linear equality and
inequality constraints are locally-error-better, weighted-sum-better, and least-squares-better. For a
given collection of constraints, Cassowary finds a locally-error-better or a weighted-sum-better solu-
tion. (In contrast, QOCA finds a least-squares-better solution. The least-squares-better comparator
strongly penalizes outlying values when trading off constraints of the same strength. It is particu-
larly suited to tasks such as laying out a tree, a graph, or a collection of windows, where there are
inherently conflicting preferences [6].) Locally-error-better is a more permissive comparator, in that
it admits more solutions to the constraints. (In fact any least-squares-better or weighted-sum-better
solution is also a locally-error-better solution [4].) It is thus easier to implement algorithms to find a
locally-error-better solution, and in particular to design hybrid algorithms that include sub-solvers
for simultaneous equations and inequalities and also sub-solvers for non-numeric constraints [3].

2

1.2 Adapting the Simplex Algorithm

Linear programming is concerned with solving the following problem. Consider a collection of n real-
valued variables x1, . . . , xn, each of which is constrained to be non-negative: xi ≥ 0 for 1 ≤ i ≤ n.
There are m linear equality or inequality constraints over the xi, each of the form:

a1x1 + . . . + anxn = b,
a1x1 + . . . + anxn ≤ b, or
a1x1 + . . . + anxn ≥ b.

Given these constraints, we wish to find values for the xi that minimizes (or maximizes) the value
of the objective function

c + d1x1 + . . . + dnxn.

This problem has been heavily studied for the past 50 years. The most commonly used algorithm for
solving it is the simplex algorithm, developed by Dantzig in the 1940s, and there are now numerous
variations of it. Unfortunately, existing implementations of the simplex are not really suitable for
UI applications.

The principal issue is incrementality. For interactive graphical applications, we need to solve similar
problems repeatedly, rather than solving a single problem once. To achieve interactive response
times, very fast incremental algorithms are needed. There are two cases. First, when moving an
object with a mouse or other input device, we typically represent this interaction as a one-way
constraint relating the mouse position to the desired x and y coordinates of a part of the figure. For
this case we must re-satisfy the same collection of constraints, differing only in the mouse location,
each time the screen is refreshed. Second, when editing an object we may add or remove constraints
and other parts, and we would like to make these operations fast, by reusing as much of the previous
solution as possible. The performance requirements are considerably more stringent for the first case
than for the second.

Another issue is defining a suitable objective function. The objective function in the standard
simplex algorithm must be a linear expression; but the objective functions for the locally-error-
better, weighted-sum-better, and least-squares-better comparators are all non-linear. Fortunately
techniques have been developed in the operations research community for handling these cases, which
we adopt here. For the first two comparators, the objective functions are “almost linear,” while the
third comparator gives rise to a quadratic optimization problem.

Finally, a third issue is accommodating variables that may take on both positive and negative values,
which in general is the case in UI applications. (The standard simplex algorithm requires all variables
to be non-negative.) Here we adopt efficient techniques developed for implementing constraint logic
programming languages.

1.3 Overview

We present algorithms for incrementally solving linear equality and inequality constraints for the
three different comparators described above. In Section 2.1 we give algorithms for incrementally
adding and deleting required constraints with restricted and unrestricted variables from a system of
constraints kept in augmented simplex form, a type of solved form. In Section 3.1 we explain the
Cassowary algorithm, based on the dual simplex method, for incrementally solving hierarchies of
constraints using the locally-error-better or weighted-sum-better comparators when a constraint is
added or an object is moved.

3

Cassowary has been implemented in Smalltalk, C++, and Java. It performs surprisingly well,
and a summary of our results is given in Section 5. The algorithm is straightforward, and a re-
implementation based on this paper is more reasonable, given a knowledge of the simplex algorithm.
The various implementations with example applications are available from the authors.

1.4 Related Work

There is a long history of using constraints in user interfaces and interactive systems, beginning
with Ivan Sutherland’s pioneering Sketchpad system [18]. Most of the current systems use one-
way constraints (e.g., [11, 15]), or local propagation algorithms for acyclic collections of multi-
way constraints (e.g., [17, 19]). Indigo [2] handles acyclic collections of inequality constraints, but
not cycles (simultaneous equations and inequalities). UI systems that handle simultaneous linear
equations include DETAIL [10] and Ultraviolet [3]. A number of researchers (including the second
author) have experimented with a straightforward use of a simplex package in a UI constraint solver,
but the speed was not satisfactory for interactive use.

Baraff [1] describes a quadratic optimization algorithm for solving linear constraints that arise in
modeling physical systems. Finally, much of the work on constraint solvers has been in the logic
programming and constraint logic programming communities. Current constraint logic programming
languages such as CLP(R) [13] include efficient solvers for linear equalities and inequalities. (See
[14] for a survey.) However, these solvers use a refinement model of computation, in which the
values determined for variables are successively refined as the computation progresses, but there is
no notion as such of state and change. As a result, these systems are not so well suited for building
interactive graphical applications.

Borning, Marriot, Stuckey, and Xiao discuss both the original version of Cassowary and the related
QOCA algorithm [7, 6]. QOCA uses the same solving technique as Cassowary, but uses a least-
squares-better comparator during the optimization from basic feasible solved form. An earlier version
of QOCA is described in references [8] and [9]. These earlier descriptions, however, do not give any
details of the algorithm, although the incremental deletion algorithm is described in [12].

2 Incremental Simplex

As you see, the subject of linear programming is surrounded by notational and ter-
minological thickets. Both of these thorny defenses are lovingly cultivated by a coterie
of stern acolytes who have devoted themselves to the field. Actually, the basic ideas of
linear programming are quite simple. – Numerical Recipes, [16, page 424]

We now describe an incremental version of the simplex algorithm, adapted to the task at hand. In
the description we use a running example, illustrated by the diagram in Figure 1.

xm xrxl

500 100

Figure 1: Simple constrained picture

4

The constraints on the variables in Figure 1 are as follows: xm is constrained to be the midpoint of
the line from xl to xr, and xl is constrained to be at least 10 to the left of xr. All variables must lie
in the range 0 to 100. (To keep the presentation manageable, we deal only with the x coordinates.
Adding analogous constraints on the y coordinates would be simple but would double the number
of the constraints in our example.) Since xl < xm < xr in any solution, we simplify the problem by
removing the redundant bounds constraints. However, even with these simplifications the resulting
constraints have a cyclic constraint graph, and cannot be handled by methods such as Indigo.

We can represent this using the constraints

2xm = xl + xr

xl + 10 ≤ xr

xr ≤ 100
0 ≤ xl

Now suppose we wish to minimize the distance between xm and xl or in other words, minimize
xm − xl.

2.1 Augmented Simplex Form

An optimization problem is in augmented simplex form if constraint C has the form CU ∧ CS ∧ CI

where CU and CS are conjunctions of linear arithmetic equations and CI is
∧{x ≥ 0 | x ∈ vars(CS)}

and the objective function f is a linear expression over variables in CS . The simplex algorithm does
not itself handle variables that may take negative values (so-called unrestricted variables), and
imposes a constraint x ≥ 0 on all variables occurring in its equations. Augmented simplex form
allows us to handle unrestricted variables efficiently and simply; it was developed for implementing
constraint logic programming languages [14], and we have adopted it here. Essentially it uses two
tableaux rather than one. All of the unrestricted variables will be placed in CU , the unrestricted
variable tableau. CS , the simplex tableau, contains only variables constrained to be non-negative.
The simplex algorithm is used to determine an optimal solution for the equations in the simplex
tableau, ignoring the unrestricted variable tableau for purposes of optimization. The equations in
the unrestricted variable tableau are then used to determine values for its variables.

Implementation Note. In the paper we describe CU and CS as two separate tableaux. In the
implementation, however, it turns out to be simpler to have just one tableau, since most operations
are applied to both CU and CS . Unrestricted and restricted variables are instances of different
classes, and in the code we differentiate when necessary by sending the isRestricted message to the
variable for each row. See Section 4.

It is not difficult to write an arbitrary optimization problem over linear real equations and inequalities
into augmented simplex form. The first step is to convert inequalities to equations. Each inequality
of the form e ≤ r, where e is a linear real expression and r is a number, can be replaced with
e + s = r ∧ s ≥ 0 where s is a new non-negative slack variable.

For example, the constraints for Figure 1 can be written as

minimize xm − xl subject to

2xm = xl + xr

xl + 10 + s1 = xr

xr + s2 = 100
0 ≤ xl, s1, s2

5

We now separate the equalities into CU and CS . Initially all equations are in CS . We separate out
the unrestricted variables into CU using Gauss-Jordan elimination. To do this, we select an equation
in CS containing an unrestricted variable u and remove the equation from CS . We then solve the
equation for u, yielding a new equation u = e for some expression e. We then substitute e for all
remaining occurrences of u in CS , CU , and f , and place the equation u = e in CU . The process is
repeated until there are no more unrestricted variables in CS . In our example the third equation
can be used to substitute 100− s2 for xr obtaining

minimize xm − xl subject to

xr = 100− s2

2xm = xl + 100− s2

xl + 10 + s1 = 100− s2

0 ≤ xl, s1, s2

Next, and the first equation can be used to substitute 50 + 1
2xl − 1

2s2 for xm, giving

minimize 50− 1
2xl − 1

2s2 subject to

xm = 50 + 1
2xl − 1

2s2

xr = 100− s2

xl + 10 + s1 = 100− s2

0 ≤ xl, s1, s2

The tableau shows CU above the horizontal line, and CS and CI below the horizontal line. From now
on CI will be omitted — any variable occurring below the horizontal line is implicitly constrained to
be non-negative. The simplex method works by taking an optimization problem in “basic feasible
solved form” (a type of normal form) and repeatedly applying matrix operations to obtain new
basic feasible solved forms. Once we have split the equations into CU and CS we can ignore CU for
purposes of optimization.

One Detail. The example includes the constraint xl ≥ 0. To simplify the example, we just make
xl be a restricted variable to capture this constraint. In the Cassowary implementation, however,
all variables that may be accessed from outside the solver as well as within it are unrestricted. Only
error or slack variables are represented as restricted variables, and these variables occur only within
the solver. See Section 4. The primary benefit of this is that the programmer using the solver always
uses just the one kind of variable. A minor benefit is that only the external, unrestricted variables
actually store their values as a field in the variable object; the values of restricted variables are just
given by the tableau. A minor drawback is that the constraint v ≥ 0 must be represented explicitly.
(For any other constant c 6= 0, v ≥ c must be represented explicitly in any event.)

Another Detail. The operations are shown as modifying CU as well as CS . It would be possible to
modify just CS and leave CU unchanged, using CU only to define values for the variables on the left
hand side of its equations. This would speed up pivoting but it would make the incremental updates
of the constants in edit constraints slower; and since this is a much more frequent operation, in the
implementation we do actually modify both CU and CS .

An augmented simplex form optimization problem is in basic feasible solved form if the equations
are of the form

x0 = c + a1x1 + . . . + anxn

where the variable x0 does not occur in any other equation or in the objective function. If the
equation is in CS , c must be non-negative. However, there is no such restriction on the constants for
the equations in CU . In either case the variable x0 is said to be basic and the other variables in the

6

equation are parameters. A problem in basic feasible solved form defines a basic feasible solution,
which is obtained by setting each parametric variable to 0 and each basic variable to the value of
the constant in the right-hand side.

For instance, the following constraint is in basic feasible solved form and is equivalent to the problem
above.

minimize 50− 1
2xl − 1

2s2 subject to

xm = 50 + 1
2xl − 1

2s2

xr = 100 −s2

s1 = 90 −xl −s2

The basic feasible solution corresponding to this basic feasible solved form is

{xm 7→ 50, xr 7→ 100, s1 7→ 90, xl 7→ 0, s2 7→ 0}.
The value of the objective function with this solution is 50.

2.2 Simplex Optimization

We now describe how to find an optimum solution to a constraint in basic feasible solved form.
Except for the operations on the additional unrestricted variable tableau CU , the material presented
in this subsection is simply Phase II of the standard two-phase simplex algorithm.

The simplex algorithm finds the optimum by repeatedly looking for an “adjacent” basic feasible
solved form whose basic feasible solution decreases the value of the objective function. When no
such adjacent basic feasible solved form can be found, the optimum has been found. The underlying
operation is called pivoting, and involves exchanging a basic and a parametric variable using matrix
operations. Thus by “adjacent” we mean the new basic feasible solved form can be reached by
performing a single pivot.

In our example, increasing xl from 0 will decrease the value of the objective function. We must
be careful as we cannot increase the value of xl indefinitely as this may cause the value of some
other basic non-negative variable to become negative. We must examine the equations in CS . The
equation s1 = 90− xl − s2 allows xl to take at most a value of 90, as if xl becomes larger than this,
then s1 would become negative. The equations above the horizontal line do not restrict xl, since
whatever value xl takes the unrestricted variables xm and xr can take a value to satisfy the equation.
In general, we choose the most restrictive equation in CS , and use it to eliminate xl. In the case of
ties we arbitrarily break the tie. In this example the most restrictive equation is s1 = 90− xl − s2.
Writing xl as the subject we obtain xl = 90− s1− s2. We replace xl everywhere by 90− s1− s2 and
obtain

minimize 5 + 1
2s1 subject to

xm = 95 − 1
2s1 −s2

xr = 100 −s2

xl = 90 −s1 −s2

We have just performed a pivot, having moved s1 out of the set of basic variables and replaced it
by xl.

We continue this process. Increasing the value of s1 will increase the objective (that we are trying
to minimize). Note that decreasing s1 will also decrease the objective function value, but as s1

7

simplex opt(CS ,f)
repeat

% Choose variable yJ to become basic
if for each j ∈ {1, . . . , m} dj ≥ 0 then

return % an optimal solution has been found
endif
choose J ∈ {1, . . . , m} such that dJ < 0
% Choose variable xI to become non-basic
choose I ∈ {1, . . . , n} such that

−cI/aIJ = mini∈{1,...,n}{−ci/aiJ | aiJ < 0}
e := (xI − cI −

∑m
j=1,j 6=J aIjyj)/aIJ

CS [I] := (YJ = e)
replace YJ by e in f
for each i ∈ {1, . . . , n}

if i 6= I then replace YJ by e in CS [I] endif
endfor

endrepeat

Figure 2: Simplex optimization

is constrained to be non-negative, it already takes its minimum value of 0 in the associated basic
feasible solution. Hence we are at an optimal solution.

(If we were to have an unrestricted variable in the objective function, the optimization would be
unbounded. This is not an issue for our algorithm since the objective function in those cases always
only contains restricted variables, i.e., variables implicitly constrained to be non-negative.)

In general, the simplex algorithm applied to CS is described as follows. We are given a problem in
basic feasible solved form in which the variables x1, . . . , xn are basic and the variables y1, . . . , ym are
parameters.

minimize e +
∑m

j=1 djyj subject to∧n
i=1 xi = ci +

∑m
j=1 aijyj ∧∧n

i=1 xi ≥ 0 ∧∧m
j=1 yj ≥ 0.

Select an entry variable yJ such that dJ < 0. (An entry variable is one that will enter the basis,
i.e., it is currently parametric and we want to make it basic.) Pivoting on such a variable can
only decrease the value of the objective function. If no such variable exists, the optimum has been
reached. Now determine the exit variable xI . We must choose this variable so that it maintains
basic feasible solved form by ensuring that the new ci’s are still positive after pivoting. That is, we
must choose an xI so that −cI/aIJ is a minimum element of the set

{−ci/aiJ | aiJ < 0 and 1 ≤ i ≤ n}.
If there were no i for which aiJ < 0 then we could stop since the optimization problem would be
unbounded, and so would not have a minimum. This is because we could choose yJ to take an
arbitrarily large value, and so make the objective function arbitrarily small. However, this is not an
issue in our context since our optimization problems will always have a lower bound of 0.

We proceed to choose xI , and pivot xI out and replace it with yJ to obtain the new basic feasible
solution. We continue this process until an optimum is reached. The algorithm is specified in
Figure 2, and takes as inputs the simplex tableau CS and the objective function f .

8

2.3 Incrementality: Adding a Constraint

We now describe how to add the equation for a new constraint incrementally. This technique is
also used in our implementations to find an initial basic feasible solved form for the original simplex
problem, by starting from an empty constraint set and adding the constraints one at a time.

As an example, suppose we wish to ensure that the midpoint sits in the center of the screen. This
is represented by the constraint xm = 50. If we substitute for each of the basic variables (only
xm) in this constraint we obtain the equation 45 − 1

2s1 − s2 = 0. In order to add this constraint
straightforwardly to the tableau we create a new non-negative variable a called an artificial variable.
(This is simply an incremental version of the operation used in Phase I of the two-phase simplex
algorithm.) We let a = 45− 1

2s1 − s2 be added to the tableau (clearly this gives a tableau in basic
feasible solved form) and then minimize the value of a. If a takes the value 0 then we have obtained
a solution to the problem with the added constraint, and we can then eliminate the artificial variable
altogether since it is a parameter (and hence takes the value 0). This is the case for our example;
the resulting tableau is

xm = 50
xr = 100 −s2

xl = 0 +s2

s1 = 90 −2s2

In general, to add a new required constraint to the tableau we first convert it to an augmented
simplex form equation by adding slack variables if it is an inequality. Next, we use the current
tableau to substitute out all the basic variables. This gives an equation e = c where e is a linear
expression. If c is negative, we multiply both sides by −1 so that the constant becomes non-negative.
If e contains an unrestricted variable we use it to substitute for that variable and add the equation
to the tableau above the line (i.e., to CU). Otherwise we create a restricted artificial variable a
and add the equation a = c − e to the tableau below the line (i.e., to CS), and minimize c − e.
If the resulting minimum is not zero then the constraints are unsatisfiable. Otherwise a is either
parametric or basic. If a is parametric, the column for it can be simply removed from the tableau. If
it is basic, the row must have constant 0 (since we were able to achieve a value of 0 for our objective
function, which is equal to a). If the row is just a = 0, it can be removed. Otherwise, a = 0 + bx+ e
where b 6= 0. We can then pivot x into the basis using this row and remove the column for a.

Implementation Note. In some cases we can add an equation to the tableau without using an
artificial variable, even when the equation contains only restricted variables, and for efficiency should
do so when it is easy to detect that this can be done. See Section 4.3.2.

2.4 Incrementality: Removing a Constraint

We also want a method for incrementally removing a constraint from the tableaux. After a series of
pivots have been performed, the information represented by the constraint may not be contained in
a single row, so we need a way to identify the constraint’s influence in the tableaux. To do this, we
use a “marker” variable that is originally present only in the equation representing the constraint.
We can then identify the constraint’s effect on the tableaux by looking for occurrences of that marker
variable. For inequality constraints, the slack variable s added to make it an equality serves as the
marker, since s will originally occur only in that equation. The equation representing a non-required
equality constraint will have an error variable that can serve as a marker — see Section 2.5. For
required equality constraints, we add a “dummy” restricted variable to the original equation to serve

9

as a marker, which we never allow to enter the basis (so that it always has value 0). In our running
example, then, to allow the constraint 2xm = xl + xr to be deleted incrementally we would add a
dummy variable d3, resulting in 2xm = xl + xr + d3. The simplex optimization routine checks for
these dummy variables in choosing an entry variable, and does not allow one to be selected. (We
did not include this variable in the tableaux presented earlier to keep things simpler.)

(Note: these dummy variables must be restricted, not unrestricted, since we might need to have
some of them in the equations for restricted basic variables.)

Consider removing the constraint that xl is 10 to the left of xr . The slack variable s1, which we
added to the inequality to make it an equation, records exactly how this equation has been used to
modify the tableau. We can remove the inequality by pivoting the tableau until s1 is basic and then
simply drop the row in which it is basic.

In the tableau above s1 is already basic, and so removing it simply means dropping the row in which
it is basic, obtaining

xm = 50
xr = 100 −s2

xl = 0 +s2

If we wanted to remove this constraint from the tableau before adding xm = 50 (i.e., the final tableau
given in Section 2.2), s1 is a parameter. We make s1 basic by treating it as an entry variable and
(as usual) determining the most restrictive equation and using that to pivot s1 into the basis, and
then remove the row.

There is such a restrictive equation in this example. However, if no equation restricts the size of the
marker variable, that is, its coefficients are all non-negative, then either the marker variable has a
positive coefficient in all equations, or it only occurs in equations for unrestricted variables. If it does
occur in an equation for a restricted variable, pick the equation that gives the smallest ratio. (The
row with the marker variable will become infeasible, but all the other rows will still be feasible, and
we will be dropping the row with the marker variable. In effect we are removing the non-negativity
restriction on the marker variable.) Finally, if it only occurs in equations for unrestricted variables,
we can choose any equation in which it occurs.

In the case above, the row xl = 90 − s1 − s2 is the most constraining equation. Pivoting to let s1

enter the basis, and then removing the row in which it is basic, we obtain

xm = 50 + 1
2xl − 1

2s2

xr = 100 −s2

In the preceding example the marker variable had a negative coefficient. Here is an example in which
it just has positive coefficients. The original constraints are:

x ≥ 10
x ≥ 20
x ≥ 30

In basic feasible solved form this is:

10

x = 30 +d3

s1 = 20 +d3

s2 = 10 +d3

where s1, s2, and d3 are the marker variables for x ≥ 10, x ≥ 20, and x ≥ 30 respectively.

Suppose we want to remove the x ≥ 30 constraint. We need to pivot to make d3 basic. The equation
that gives the smallest ratio is s2 = 10 + d3, so the entry variable is d3 and the exit variable is s2,
giving:

x = 20 +s2

s1 = 10 +s2

d3 = −10 +s2

This is now infeasible, but we drop the row with d3 giving

x = 20 +s2

s1 = 10 +s2

which is of course feasible.

As another fine point, note that there is no problem with redundant constraints. Consider:

x ≥ 10
x ≥ 10

When converted to basic feasible solved form, each x ≥ 10 constraint gets a separate slack variable,
which is used as the marker variable for that constraint.

x = 10 +s1

s2 = 0 +s1

To delete the second x ≥ 10 constraint we would simply drop the s2 = 0 + s1 row. To delete the
first x ≥ 10 constraint we would pivot, making s1 basic and s2 parametric:

x = 10 +s2

s1 = 0 +s2

and then drop the s1 = 0 + s2 row.

A consequence of this is that if there are two redundant constraints, both of them must be removed
to eliminate their effect. (This seems to be a more desirable behaviour for the solver than removing
redundant constraints automatically, although if the latter were desired the solver could be modified
to do this.) Another consequence is that when adding a new constraint, we would never decide that
it was redundant and not add it to the tableau. (If there were no dummy marker variables, we would
do this for redundant required equality constraints.)

11

2.5 Handling Non-Required Constraints

Suppose the user wishes to edit xm in the diagram and have xl and xr weakly stay where they are.
This adds the non-required constraints edit xm, stay xl, and stay xr . Suppose further that we are
trying to move xm to position 50, and that xl and xr are currently at 30 and 60 respectively. We
are thus imposing the constraints strong xm = 50, weak xl = 30, and weak xr = 60. There are two
possible translations of these non-required constraints to an objective function, depending on the
comparator used.

For locally-error-better or weighted-sum-better, we can simply add the errors of the each constraint
to form an objective function. Consider the constraint xm = 50. We define the error as |xm − 50|.
We need to combine the errors for each non-required constraint with a weight so we obtain the
objective function

s|xm − 50|+ w|xl − 30|+ w|xr − 60|
where s and w are weights so that the strong constraint is always strictly more important than solving
any combination of weak constraints, so that we find a locally-error-better or weighted-sum-better
solution. For the least-squares-better comparator the objective function is

s(xm − 50)2 + w(xl − 30)2 + w(xr − 60)2.

In the presentation, we will use s = 1000 and w = 1.

Cassowary actually uses symbolic weights and a lexicographic ordering, which ensures that strong
constraints are always satisfied in preference to weak ones (see Section 4).

Unfortunately neither of these objective functions is linear and hence the simplex method is not
applicable directly. We now show how we can solve the problem using quasi-linear optimization.

3 Cassowary’s Quasi-linear Optimization

Cassowary finds either locally-error-better or weighted-sum-better solutions. Since every weighted-
sum-better solution is also a locally-error-better solution [4], the weighted-sum part of the optimiza-
tion comes automatically from the manner in which the objective function is constructed.

Both the edit and the stay constraints will be represented as equations of the form

v = α + δ+
v − δ−v

where δ+
v and δ−v are non-negative variables representing the deviation of v from the desired value

α. If the constraint is satisfied both δ+
v and δ−v will be 0. Otherwise δ+

v will be positive and δ−v will
be 0 if v is too big, or vice versa if v is too small. Since we want δ+

v and δ−v to be 0 if possible, we
make them part of the objective function, with larger coefficients for the error variables for stronger
constraints. (We need to use the pair of variables to satisfy simplex’s non-negativity restriction,
since these variables δ+

v and δ−v will be part of the objective function.)

Translating the constraints strong xm = 50, weak xl = 30, and weak xr = 60 which arise from the
edit and stay constraints we obtain:

xm = 50 + δ+
xm

− δ−xm

xl = 30 + δ+
xl
− δ−xl

xr = 60 + δ+
xr
− δ−xr

0 ≤ δ+
xm

, δ−xm
, δ+

xl
, δ−xl

, δ+
xr

, δ−xr

The objective function to satisfy the non-required constraints can now be restated as

12

minimize 1000δ+
xm

+ 1000δ−xm
+ δ+

xl
+ δ−xl

+ δ+
xr

+ δ−xr
.

An optimal solution of this problem can be found using the simplex algorithm, and results in a
tableau

minimize 10 + 1002δ+
xm

+ 998δ−xm
+ 2δ−xl

+ 2δ−xr
subject to

xm = 50 +δ+
xm

−δ−xm

xr = 70 +2δ+
xm

−2δ−xm
−δ+

xl
+δ−xl

xl = 30 +δ+
xl

−δ−xl

s1 = 30 +2δ+
xm

−2δ−xm
−2δ+

xl
+2δ−xl

s2 = 30 −2δ+
xm

+2δ−xm
+δ+

xl
−δ−xl

δ+
xr

= 10 +2δ+
xm

−2δ−xm
−δ+

xl
+δ−xl

+δ−xr

This corresponds to the solution {xm 7→ 50, xl 7→ 30, xr 7→ 70} illustrated in Figure 1. Notice that
the weak stay constraint on xr is not satisfied (δ+

xr
is non-zero, read directly from last line of the

above tableau).

3.1 Incrementality: Resolving the Optimization Problem

Now suppose the user moves the mouse (which is editing xm) to x = 60. We wish to solve a new
problem, with constraints strong xm = 60, and weak xl = 30 and weak xr = 70 (so that xl and xr

should stay where they are if possible).

There are two steps. First, we modify the tableau to reflect the new constraints we wish to solve.
Second, we resolve the optimization problem for this modified tableau.

Let us first examine how to modify the tableau to reflect the new values of the stay constraints. This
will not require re-optimizing the tableau, since we know that the new stay constraints are satisfied
exactly. Suppose the previous stay value for variable v was α, and in the current solution v takes
value β. The current tableau contains the information that

v = α + δ+
v − δ−v

and we need to modify this so that instead

v = β + δ+
v − δ−v

There are two cases to consider: (a) both δ+
v and δ−v are parameters, or (b) one of them is basic.

In case (a) v must take the value α in the current solution since both δ+
v and δ−v take the value 0

and
v = α + δ+

v − δ−v

Hence β = α and no changes need to be made.

In case (b) assume without loss of generality that δ+
v is basic. In the original equation representing

the stay constraint, the coefficient for δ+
v is the negative of the coefficient for δ−v . Since these

variables occur in no other constraints, this relation between the coefficients will continue to hold as
we perform pivots. In other words, δ+

v and δ−v come in pairs: any equation that contains δ+
v will also

contain δ−v and vice versa. Since δ+
v is assumed to be basic, it occurs exactly once in an equation

13

with constant c, and further this equation also contains the only occurrence of δ−v . In the current
solution

{v 7→ β, δ+
v 7→ c, δ−v 7→ 0}

and since the equation
v = α + δ+

v − δ−v

holds, β = α + c. To replace the equation

v = α + δ+
v − δ−v

by
v = β + δ+

v − δ−v

we simply need to replace the constant c in the row for δ+
v by 0. Since there are no other occurrences

of δ+
v and δ−v we have replaced the old equation with the new.

For our example, to update the tableau for the new values for the stay constraints on xl and xr we
simply set the constant of last equation (the equation for δ+

xr
) to 0.

Now let us consider the edit constraints. Suppose the previous edit value for v was α, and the new
edit value for v is β. The current tableau contains the information that

v = α + δ+
v − δ−v

and again we need to modify this so that instead

v = β + δ+
v − δ−v

To do so we must replace every occurrence of

δ+
v − δ−v

by
β − α + δ+

v − δ−v

taking proper account of the coefficients of δ+
v and δ−v . (Again, remember that δ+

v and δ−v come in
pairs.)

If either of δ+
v and δ−v is basic, this simply involves appropriately modifying the equation in which

they are basic. Otherwise, if both are non-basic, then we need to change every equation of the form

xi = ci + a′vδ
+
v − a′vδ

−
v + e

to
xi = ci + a′v(β − α) + a′vδ+

v − a′vδ−v + e

Hence modifying the tableau to reflect the new values of edit and stay constraints involves only
changing the constant values in some equations. The modifications for stay constraints always
result in a tableau in basic feasible solved form, since it never makes a constant become negative.
In contrast the modifications for edit constraints may not.

To return to our example, suppose we pick up xm with the mouse and move it to 60. Then we have
that α = 50 and β = 60, so we need to add 10 times the coefficient of δ+

xm
to the constant part of

every row. The modified tableau, after the updates for both the stays and edits, is

14

minimize 20 + 1002δ+
xm

+ 998δ−xm
+ 2δ−xl

+ 2δ−xr
subject to

xm = 60 +δ+
xm

−δ−xm

xr = 90 +2δ+
xm

−2δ−xm
−δ+

xl
+δ−xl

xl = 30 +δ+
xl

−δ−xl

s1 = 50 +2δ+
xm

−2δ−xm
−2δ+

xl
+2δ−xl

s2 = 10 −2δ+
xm

+2δ−xm
+δ+

xl
−δ−xl

δ+
xr

= 20 +2δ+
xm

−2δ−xm
−δ+

xl
+δ−xl

+δ−xr

Clearly it is feasible and already in optimal form, and so we have incrementally resolved the problem
by simply modifying constants in the tableaux. The new tableaux give the solution {xm 7→ 60, xl 7→
30, xr 7→ 90}. So sliding the midpoint rightwards has caused the right point to slide rightwards as
well, but twice as far. The resulting diagram is shown at the top of Figure 3.

xm

0 10050

0 10050

xl xrxm

xr

xl

Figure 3: Resolving the constraints

Suppose we now move xm from 60 to 90. The modified tableau is

minimize 60 + 1002δ+
xm

+ 998δ−xm
+ 2δ−xl

+ 2δ−xr
subject to

xm = 90 +δ+
xm

−δ−xm

xr = 150 +2δ+
xm

−2δ−xm
−δ+

xl
+δ−xl

xl = 30 +δ+
xl

−δ−xl

s1 = 110 +2δ+
xm

−2δ−xm
−2δ+

xl
+2δ−xl

s2 = −50 −2δ+
xm

+2δ−xm
+δ+

xl
−δ−xl

δ+
xr

= 60 +2δ+
xm

−2δ−xm
−δ+

xl
+δ−xl

+δ−xr

The tableau is no longer in basic feasible solved form, since the constant of the row for s2 is negative,
even though s2 is supposed to be non-negative.

Thus, in general, after updating the constants for the edit constraints, the simplex tableau CS may
no longer be in basic feasible solved form, since some of the constants may be negative. However,
the tableau is still in basic form, so we can still read a solution directly from it as before. And since
no coefficient has changed, in particular in the optimization function, the resulting tableau reflects
an optimal but not feasible solution.

We need to find a feasible and optimal solution. We could do so by adding artificial variables (as
we did when adding a constraint), optimizing the sum of the artificial variables to find an initial
feasible solution, and then re-optimizing the original problem.

15

But we can do much better. The process of moving from an optimal and infeasible solution to an
optimal and feasible solution is exactly the dual of normal simplex algorithm, where we progress
from a feasible and non-optimal solution to feasible and optimal solution. Hence we can use the dual
simplex algorithm to find a feasible solution while staying optimal.

Solving the dual optimization problem starts from an infeasible optimal tableau of the form

minimize e + Σm
j=1djyj subject to∧n

i=1 xi = ci + Σm
j=iaijyj

where some ci may be negative for rows with non-negative basic variables (infeasibility) and each
dj is non-negative (optimality).

The dual simplex algorithm selects an exit variable by finding a row I with non-negative basic
variable xI and negative constant cI . The entry variable is the variable yJ such that the ratio
dJ/aIJ is the minimum of all dj/aIj where aIj is positive. This ensures that when pivoting we stay
at an optimal solution. The pivot replaces yj by

−1/aIj(−xI + cI + Σm
j=1,j 6=JaIjyj)

and is performed as in the (primal) simplex algorithm. The algorithm is shown in Figure 4.

Continuing the example above we select the exit variable s2, the only non-negative basic variable
for a row with negative constant. We find that δ+

xl
has the minimum ratio since its coefficient

in the optimization function is 0, so it will be the entry variable. Replacing δ+
xl

everywhere by
50 + s2 + 2δ+

xm
− 2δ−xm

+ δ+
xl

we obtain the tableau

minimize 30060 + 1002δ+
xm

+ 998δ−xm
+ 2δ−xl

+ 2δ−xr
subject to

xm = 90 +δ+
xm

−δ−xm

xr = 100 −s2

xl = 80 +s2 +2δ+
xm

−2δ−xm

s1 = 110 −2s2 +2δ+
xm

−2δ−xm

δ+
xl

= 50 +s2 +2δ+
xm

−2δ−xm
+δ−xl

δ+
xr

= 40 −s2 +δ−xr

The tableau is feasible (and of course still optimal) and represents the solution {xm 7→ 90, xr 7→
100, xl 7→ 80}. So by sliding the midpoint further right, the rightmost point hits the wall and the
left point slides right to satisfy the constraints. The resulting diagram is shown at the bottom of
Figure 3.

To summarize, incrementally finding a new solution for new input variables involves updating the
constants in the tableaux to reflect the updated stay constraints, then updating the constants to
reflect the updated edit constraints, and finally re-optimizing if needed. In an interactive graphical
application, when using the dual optimization method typically a pivot is only required when one
part first hits a barrier, or first moves away from a barrier. The intuition behind this is that when
a constraint first becomes unsatisfied, the value of one of its error variables will become non-zero,
and hence the variable will have to enter the basis; when a constraint first becomes satisfied, we can
move one of its error variables out of the basis.

In the example, pivoting occurred when the right point xr came up against a barrier. Thus, if we
picked up the midpoint xm with the mouse and smoothly slid it rightwards, 1 pixel every screen
refresh, only one pivot would be required in moving from 50 to 95. This illustrates why the dual
optimization is well suited to this problem and leads to efficient resolving of the hierarchical con-
straints.

16

re optimize(CS ,f)
foreach stay : v ∈ C

if δ+
v or δ−v is basic in row i then ci := 0 endif

endfor
foreach edit : v ∈ C

let α and β be the previous and current edit values for v
let δ+

v be yj

foreach i ∈ {1, . . . , n}
ci := ci + aij(β − α)

endfor
endfor
repeat

% Choose variable xI to become non-basic
choose I where cI < 0
if there is no such I

return true
endif
% Choose variable yJ to become basic
if for each j ∈ {1, . . . , m} aIj ≤ 0 then

return false
endif
choose J ∈ {1, . . . , m} such that

dJ/aIJ = minj∈{1,...,m}{dj/aIj | aIj > 0}
e := (xI − cI −

∑m
j=1,j 6=J aIjyj)/aIJ

replace yJ by e in f
for each i ∈ {1, . . . , n}

if i 6= I then replace yJ by e in row i endif
endfor
replace the Ith row by yJ = e

until false

Figure 4: Dual Simplex Re-optimization

4 Implementation Details

This section explains the details of the various Cassowary implementations. There is also a subsection
on some fine points regarding the comparator.

4.1 Solver Protocol

The solver itself is represented as an instance of ClSimplexSolver. The public message protocol is as
follows.

addConstraint(ClConstraint cn)
Incrementally add the linear constraint cn to the tableau. The constraint object contains its
strength.

17

removeConstraint(ClConstraint cn)
Remove the constraint cn from the tableau. Also remove any error variables associated with
cn from the objective function.

addEditVar(ClVariable v, ClStrength s)
Add an edit constraint of strength s on variable v to the tableau so that suggestValue (see
below) can be used on that variable after a beginEdit().

removeEditVar(ClVariable v)
Remove the previously added edit constraint on variable v. The endEdit message automatically
removes all the edit variables as part of terminating an edit manipulation.

beginEdit()
Prepare the tableau for new values to be given to the currently-edited variables. The addEditVar
message should be used before calling beginEdit, and suggestValue and resolve should be used
only after beginEdit has been invoked, but before the required matching endEdit.

suggestValue(ClVariable v, double n)
Specify a new desired value, n, for the variable v. Before this call, v needs to have been added
as a variable of an edit constraint (either by addConstraint of a hand-built EditConstraint object
or more simply using addEditVar).

endEdit()
Denote the end of an edit manipulation, thus removing all edit constraints from the tableau.
Each beginEdit call must be matched with a corresponding endEdit invocation.

resolve()
Try to re-solve the tableau given the newly specified desired values. Calls to resolve should be
sandwiched between a beginEdit() and a endEdit(), and should occur after new values for edit
variables are set using suggestValue.

addPointStays(Vector points)
This is a bit of a kludge, and addresses the desire to satisfy the stays on both the x and y
components of a given point rather than on the x component of one point and the y component
of another. points is an array of points, whose x and y components are constrainable variables.
This method adds a weak stay constraint to the x and y variables of each point. The weights
for the x and y components of a given point are the same. However, the weights for successive
points are each smaller than those for the previous point (1/2 of the previous weight). The
effect of this is to encourage the solver to satisfy the stays on both the x and y of a given point
rather than the x stay on one point and the y stay on another. See Subsection 4.5 for more on
this issue.

setAutoSolve(boolean f)
Choose whether the solver should automatically optimize and set external variable values after
each addConstraint or removeConstraint. By default, auto-solving is on, but passing false to
this method will turn it off (until later turned back on by passing true to this method). When
auto-solving is off, solve (below) or resolve must be invoked to see changes to the ClVariables
contained in the tableau.

FIsAutoSolving() returns boolean
Return true if and only if the solver is auto-solving, false otherwise.

solve()
Optimize the tableau and set the external ClVariables contained in the tableau to their new
values. This method need only be invoked if auto-solving has been turned off. It never needs
to be called after a resolve method invocation.

18

reset()
Re-initialize the solver from the original constraints, thus getting rid of any accumulated
numerical problems. (It is not yet clear how often such problems arise, but here is the method
anyway.)

4.1.1 Possible Revisions to Solver Protocol

One thing that might be worth changing is the way that stay constraints are handled. Currently,
each variable that is to stay at an old value needs an explicit stay constraint. These stay constraints
need to be added before any other constraints, since otherwise the variable’s value is likely to be
changed inappropriately to satisfy the other constraints while initially building the tableau.

Instead, stay constraints could be implicit for each variable, and thus be in effect added before any
other constraints.

4.2 Principal Classes

Here is a listing of the principal classes. (In the current implementations all the classes start with
“Cl”.) All of the classes are of course direct or indirect subclasses of Object for the Smalltalk and
Java implementations.

Object
ClAbstractVariable

ClDummyVariable
ClObjectiveVariable
ClSlackVariable
ClVariable

ClConstraint
ClEditOrStayConstraint

ClEditConstraint
ClStayConstraint

ClLinearConstraint
ClLinearEqualityConstraint
ClLinearInequalityConstraint

ClLinearExpression
ClTableau

ClSimplexSolver
ClStrength
ClSymbolicWeight

Following is a description of the classes. Some of these classes make use of the Dictionary abstract
data type: dictionaries have keys and values and permit efficiently finding the value for a given
key, and adding or deleting key/value pairs. One can also iterate through all keys, all values, or all
key/value pairs.

The solver itself is represented as an instance of ClSimplexSolver, with public message protocol as
described above. There is more on the implementation of this class in Subsection 4.3.

19

4.2.1 Variables

ClAbstractVariable and its subclasses represent various kinds of constrained variables. ClAbstractVari-
able is an abstract class, that is, it is just used as a superclass of other classes; one does not make
instances of ClAbstractVariable itself. ClAbstractVariable defines the message protocol for constrain-
able variables. Its only instance variable is name, which is a string name for the variable. (This is
used for debugging and constraint understanding tasks.)

Instances of the concrete ClVariable subclass of ClAbstractVariable are what the user of the solver
sees (hence it was given a nicer class name). This class has an instance variable value that holds the
value of this variable. Users of the solver can send one of these variables the message value to get
its value.

The other subclasses of ClAbstractVariable are used only within the solver. They do not hold their
own values — rather, the value is just given by the current tableau. None of them have any additional
instance variables.

Instances of ClSlackVariable are restricted to be non-negative. They are used as the slack variable
when converting an inequality constraint to an equation, and for the error variables to represent
non-required constraints.

Instances of ClDummyVariable is used as a marker variable to allow required equality constraints to
be deleted. (For inequalities or non-required constraints, the slack or error variable is used as the
marker.) These dummy variables are never pivoted into the basis.

An instance of ClObjectiveVariable is used to index the objective row in the tableau. (Conventionally
this variable is named z.) This kind of variable is just for convenience — the tableau is represented
as a dictionary (with some additional cross-references). Each row is represented as an entry in the
dictionary; the key is a basic variable and the value is an expression. So an instance of ClObjective-
Variable is the key for the objective row. The objective row is unique in that the coefficients of its
expression are ClSymbolicWeights, not just ordinary real numbers. (The current C++ and Java im-
plementations convert ClSymbolicWeights to real numbers to avoid dealing with ClLinearExpressions
parameterized on the type of the coefficient. See Section 4.2.5 for more details.)

All variables understand the following messages: isDummy, isExternal, isPivotable, and isRestricted.
They also understand messages to get and set the variable’s name.

Class isDummy isExternal isPivotable isRestricted
ClDummyVariable True False False True
ClVariable False True False False
ClSlackVariable False False True True
ClObjectiveVariable False False False False

Figure 5: Subclasses of ClAbstractVariable

For isDummy, instances of ClDummyVariable return true and everyone else returns false. The solver
uses this message to test for dummy variables. It will not choose a dummy variable as the subject
for a new equation, unless all the variables in the equation are dummy variables. (The solver also
will not pivot on dummy variables, but this is handled by the isPivotable message.)

For isExternal, instances of ClVariable return true and everyone else returns false. If a variable
responds true to this message, it means that it is known outside the solver, and so the solver needs
to give it a value after solving is complete.

20

For isPivotable, instances of ClSlackVariable returns true and everyone else returns false. The solver
uses this message to decide whether it can pivot on a variable.

For isRestricted, instances of ClSlackVariable and of ClDummyVariable return true, and instances of
ClVariable and ClObjectiveVariable return false. Returning true means that this variable is restricted
to being non-negative.

So variables do not hold state, except for a name for debugging, and a value for instances of ClVariable
— mostly their significance is just their identity. The only other messages that variables understand
are some messages to ClVariable for creating constraints — see Subsection 4.2.4.

4.2.2 Linear Expressions

Instances of the class ClLinearExpression hold a linear expression, and are used in building and
representing constraints, and in representing the tableau. A linear expression holds a dictionary of
variables and coefficients (the keys are variables and the values are the corresponding coefficients).
Only variables with non-zero coefficients are included in the dictionary; if a variable is not in this
dictionary its coefficient is assumed to be zero. The other instance variable is a constant. So to
represent the linear expression a1x1 + · · · + anxn + c, the dictionary would hold the key x1 with
value a1, etc., and the constant c.

Linear expressions understand a large number of messages. Some of these are for constraint creation
(see Section 4.2.4). The others are to substitute an expression for a variable in the constraint, to
add an expression, to find the coefficient for a variable, and so forth.

4.2.3 Constraints

There is an abstract class ClConstraint that serves as the superclass for other concrete classes. It
defines two instance variables: strength and weight. The variable strength is the strength of this
constraint in the constraint hierarchy (and should be an instance of ClStrength), while weight is a
float indicating the weight of the constraint, or nil/null if it does not have a weight. (Weights are
only relevant for weighted-sum-better comparators, not for locally-error-better ones.)

Constraints understand various message that return true or false regarding some aspect of the
constraint, such as isRequired, isEditConstraint, isStayConstraint, and isInequality.

ClLinearConstraint is an abstract subclass of ClConstraint. It adds an instance variable expression,
which holds an instance of ClLinearExpression. It has two concrete subclasses. An instance of
ClLinearEquation represents the linear equality constraint

expression = 0.

An instance of ClLinearInequality represents the constraint

expression ≥ 0.

The other part of the hierarchy is for edit and stay constraints (both of which are represented
explicitly in the current implementation). ClEditOrStayConstraint has an instance field variable,
which is the ClVariable with the edit or stay. Otherwise all they do is respond appropriately to the
messages isEditConstraint and isStayConstraint.

This constraint hierarchy is also intended to allow extension to include local propagation constraints
(which would be another subclass of ClConstraint) — otherwise we could have made everything be

21

a linear constraint, and eliminated the abstract class ClConstraint entirely.

4.2.4 Constraint Creation

This subsection describes a mechanism to allow constraints to be defined easily by programmers.
The convenience afforded by Cassowary varies among languages. Smalltalk’s dynamic nature makes
it the most expressive. C++’s operator overloading still permits using natural infix notation. Java,
however, requires using regular methods, and leaves us with the single option of prefix expressions
when building constraints.

In Smalltalk, the messages +, -, *, and / are defined for ClVariable and ClLinearExpression to allow
convenient creation of constraints by programmers. Also, ClVariable and ClLinearExpression, as well
as Number, define cnEqual:, cnGEQ:, and cnLEQ: to return linear equality or inequality constraints.
Thus, the Smalltalk expression

3*x+5 cnLEQ: y

returns an instance of ClLinearEquality representing the constraint 3x+5 ≤ y. This works as follows.
The number 3 gets the message * x. Since x is not a number, 3 sends the message * 3 to x. x is
an instance of ClVariable, which understands * to return a new linear expression with a single term,
namely itself times the argument. (If the argument is not a number it raises an exception that
the expression is non-linear.) The linear expression representing 3x gets the message + with the
argument 5, and returns a new linear expression representing 3x+5. This linear expression gets the
message cnLEQ: with the argument y. It computes a new linear expression representing y − 3x− 5,
and then returns an instance of ClLinearInequality with this expression.

(It is tempting to make this nicer by using the =, <=, and >= messages, so that one could write

3*x+5 <= y

instead but since the rest of Smalltalk expects =, <=, and >= to perform a test and return a
boolean, rather than to return a constraint, this would not be a good idea.)

Similarly, in C++ the arithmetic operators are overloaded to build ClLinearExpressions from ClVari-
ables and other ClLinearExpressions. Actual constraints are built using various constructors for
ClLinearEquation or ClLinearInequality. An enumeration defines the symbolic constants cnLEQ and
cnGEQ to approximate the Smalltalk interface. For example:

ClLinearInequality cn(3*x+5, cnLEQ, y); // C++

build the constraint cn representing 3x + 5 ≤ y.

In Java, the same constraint would be built as follows:

ClLinearInequality cn = new ClLinearInequality(CL.Plus(CL.Times(x,3),5), CL.LEQ, y);

Though the Java implementation makes it difficult to express hard-coded constraints, use of the
implementation in conjunction with a user interface for specifying the constraints has shown that
the inconvenience is relatively unimportant.

4.2.5 Symbolic Weights and Strengths

The constraint hierarchy theory allows an arbitrary (although finite) number of strengths of con-
straint. In practice, however, programmers use a small number of strengths in a stylized way. The

22

current implementation therefore includes a small number of pre-defined strengths, and the maxi-
mum number of strengths is defined as a constant. (This constant can be changed — see below —
but we would not expect to do so frequently.)

The strengths are currently defined as follows.

required Required constraints must be satisfied. This strength is used for most programmer-defined
constraints.

strong This strength is used for edit constraints.

medium Currently unused.

weak This strength is used for stay constraints.

These are represented as four instances of ClStrength.

The other relevant class is ClSymbolicWeight. As mentioned in Section 2.5, the objective function is
formed as the weighted sum of the positive and negative errors for the non-required constraints. The
weights should be such that the stronger constraints totally dominate the weaker ones. In general
to pick a real number for the weight we need to know how big the values of the variables can be.
To avoid this problem altogether, rather than real numbers as weights we use symbolic weights and
a lexicographic ordering, which ensures that strong constraints are always satisfied in preference to
weak ones.

Instances of ClSymbolicWeight are used to represent these symbolic weights. These instances have
an array of floating point numbers, whose length is the number of non-required strengths (so 3 at
the moment). Each element of the array represents the value at that strength, so (1.0, 0.0, 10.0)
represents a weight of 1.0 strong, 0.0 medium, and 10.0 weak. (In Smalltalk ClSymbolicWeight is a
variable length subclass; we could have had an instance variable with an array of length 3 instead.)
Symbolic weights understand various arithmetic messages, as follows (in C++, these are implemented
using operator overloading):

+ w
w is also a symbolic weight. Return the result of adding self/this to w.

– w
w is also a symbolic weight. Return the result of subtracting w from self/this.

* n
n is a number. Return the result of multiplying self/this by n.

/ n
n is a number. Return the result of dividing self/this by n.

<= n, >= n, < n, > n, = n
w is a symbolic weight. Return true if self is related to n as the operator normally queries.

negative
Return true if this symbolic weight is negative (i.e., it does not consist of all zeros and the first
non-zero number is negative).

23

Instances of ClStrength represent a strength in the constraint hierarchy. The instance variables are
name (for printing purposes) and symbolicWeight, which is the unit symbolic weight for this strength.
Thus, with the 3 strengths as above, strong is (1.0, 0.0, 0.0), medium is (0.0, 1.0, 0.0), and weak is
(0.0, 0.0, 1.0).

The above arithmetic messages let the Smalltalk implementation of the solver use symbolic weights
just like numbers in expressions. This is important because the objective row in the tableau has
coefficients which are ClSymbolicWeights but are subject to the same manipulation as the other
tableau rows whose expressions have coefficients which are just real numbers.

In both C++ and Java, an additional message asDouble() is understood by ClSymbolicWeights. This
converts the representation to a real number that approximates the total ordering suggested by the
more general vector of real numbers. It is these real numbers that are used as the coefficients in
the objective row of the tableau instead of ClSymbolicWeights (which the coefficients conceptually
are). This kludge avoids the complexities that such genericity introduces to the static type systems
of C++ and Java. (An improved C++ implementation using templates is underway.)

Also, since Java lacks operator overloading, the above operations are invoked using suggestive al-
phabetic method names such as add, subtract, times, and lessThan.

4.3 ClSimplexSolver Implementation

Here are the instance variables of ClSimplexSolver (some fields are inherited from ClTableau, the base
class of ClSimplexSolver which provides the basic sparse-matrix interface — see section 4.3.1).

rows
A dictionary with keys ClAbstractVariable and values ClLinearExpression. This holds the tableau.
Note that the keys can be either restricted or unrestricted variables, i.e., both CU and CS are
actually merged into one tableau. This simplified the code considerably, since many operations
are applied to both restricted and unrestricted rows.

columns
A dictionary with keys ClAbstractVariable and values Set of ClAbstractVariable. These are the
column cross-indices. Each parametric variable p should be a key in this dictionary. The
corresponding set should include exactly those basic variables whose linear expression includes
p (p will of course have a non-zero coefficient). The keys can be either unrestricted or restricted
variables.

objective
Return an instance of ClObjectiveVariable (named z) that is the key for the objective row in
the tableau.

infeasibleRows
Return a set of basic variables that have infeasible rows. (This is used when re-optimizing
with the dual simplex method.)

prevEditConstants
An array of constants (floats) for the edit constraints on the previous iteration. The elements
in this array must be in the same order as editPlusErrorVars and editMinusErrorVars, and the
argument to the public resolve: message.

stayPlusErrorVars
An array of plus error variables (instances of ClSlackVariable) for the stay constraints. The
corresponding negative error variable must have the same index in stayMinusErrorVars.

24

stayMinusErrorVars
See stayPlusErrorVars.

editPlusErrorVars
An array of plus error variables (instances of ClSlackVariable) for the edit constraints. The
corresponding negative error variable must have the same index in editMinusErrorVars.

editMinusErrorVars
See editPlusErrorVars.

markerVars
A dictionary whose keys are constraints and whose values are instances of a subclass of ClAb-
stractVariable. This dictionary is used to find the marker variable for a constraint when deleting
that constraint. A secondary use is that iterating through the keys will give all of the original
constraints (useful for reset).

errorVars
A dictionary whose keys are constraints and whose values are arrays of ClSlackVariable. This
dictionary gives the error variable (or variables) for a given non-required constraint. We need
this if the constraint is deleted, since the corresponding error variables must be deleted from
the objective function.

slackCounter
Used for debugging. An integer used to generate names for slack variables, which are useful
when printing out expressions. (Thus we get slack variables named s1, s2, etc.)

artificialCounter
Similar to slackCounter but for artificial variables.

dummyCounter
Similar to slackCounter but for dummy variables (i.e., marker variables for required equality
constraints).

4.3.1 ClTableau (Sparse Matrix) Operations

The basic requirements for the tableau representation are that one should be able to perform the
following operations efficiently:

• determine whether a variable is basic

• determine whether a variable is parametric

• find the corresponding expression for a basic variable

• iterate through all the parametric variables with non-zero coefficients in a given row

• find all the rows that contain a given parametric variable with a non-zero coefficient

• add a row

• remove a row

• remove a parametric variable

• substitute out a variable (i.e., replace all occurrences of a variable with an expression, updating
the tableau as appropriate).

25

The representation of the tableau as a dictionary of rows, with column cross-indices, supports these
operations. Keeping the cross indices up-to-date is a bit tricky, and so the solver actually accesses the
rows and columns only via the below interface of ClTableau, to avoid getting the two representations
out of sync.

addRow(ClAbstractVariable var, ClLinearExpression expr)
Add the constraint var=expr to the tableau. var will become a basic variable. Update the
column cross indices.

noteAddedVariable(ClAbstractVariable var, ClAbstractVariable subject)
Variable var has been added to the linear expression for subject. Update the column cross
indices.

noteRemovedVariable(ClAbstractVariable var, ClAbstractVariable subject)
Variable var has been removed from the linear expression for subject. Update the column cross
indices.

removeColumn(ClAbstractVariable var)
Remove the parametric variable var from the tableau. This involves removing the column cross
index for var and removing var from every expression in rows in which it occurs.

removeRow(ClAbstractVariable var)
Remove the basic variable var from the tableau. Since var is basic, there should be a row
var=expr. Remove this row, and also update the column cross indices.

substituteOut(ClAbstractVariable var, ClLinearExpression expr)
Replace all occurrences of var with expr and update the column cross indices.

4.3.2 Adding a Constraint

Section 2.3 discussed how to add constraints incrementally. If the equation contains any unrestricted
variables, we can not use an artificial variable because we can not put an equation in CS that contains
an unrestricted variable. In some other cases we can avoid using an artificial variable for efficiency.
We can avoid using an artificial variable if we can choose a subject for the equation from among its
current variables. Here are the rules for choosing a subject. (These are to be used after replacing
any basic variables with their defining expressions.)

We start with an expression expr (which is an instance of ClLinearExpression). If necessary, normalize
expr by multiplying by −1 so that its constant part is non-negative. We are adding the constraint
expr=0 to the tableau. To do this we want to pick a variable in expr to be the subject of an equation,
so that we can add the row var=expr2, where expr2 is the result of solving expr=0 for var.

• If expr contains any unrestricted variables, we must choose an unrestricted variable as the
subject.

• If the subject is new to the solver, we will not have to do any substitutions, so we prefer new
variables to ones that are currently noted as parametric.

• If expr contains only restricted variables, if there is a (restricted) variable in expr that has a
negative coefficient and that is new to the solver, we can pick that variable as the subject.

• Otherwise use an artificial variable.

26

A consequence of these rules is that we can always add a non-required constraint to the tableau
without using an artificial variable, since the equation will contain a positive and a negative error or
slack variable, both of which are new to the solver, and which occur with opposite signs. (Constraints
that are originally equations will have a positive and a negative error variable, while constraints that
are originally inequalities will have one error variable and one slack variable, with opposite signs.)
This is good because a common operation is adding a non-required edit.

4.3.3 Removing a Constraint

Here are a few additional remarks in addition to the material presented in Section 2.4.

First, before we remove the constraint, there may be some stay constraints that were unsatisfied
previously — if we just removed the constraint these could come into play. Instead, reset all of the
stays so that all variables are constrained to stay at their current values.

Also, if the constraint being removed is not required we need to remove the error variables for it
from the objective function. To do this we add the following to the expression for the objective
function:

−1× e× s× w

where e is the error variable if it is parametric, or else e is its defining expression if it is basic, s
is the unit symbolic weight for the constraint’s strength, and w is its weight. (s is an instance of
ClSymbolicWeight and w is a float.)

If we allow non-required constraints other than stays and edits, we also need to re-optimize after
deleting a constraint, since a non-required constraint might have become satisfiable (or more nearly
satisfiable).

4.4 Omissions

The solver should implement Bland’s anti-cycling rule [14], but it does not at the moment. Adding
this should be straightforward.

4.5 Comparator Details

Our implementation of Cassowary favors solutions that satisfies some of the constraints completely,
rather than ones that, for example, partially satisfy each of two conflicting equalities. These are still
legitimate locally-error-better solutions. Cassowary’s behaviour is analogous to that of the simplex
algorithm, which always finds solutions at a vertex of the polytope even if all the solutions on an
edge or face are equally good. (And of course Cassowary behaves this way because simplex does.)

Such solutions are also produced by greedy constraint satisfaction algorithms, including local prop-
agation algorithms such as DeltaBlue [17] and Indigo [2], since these algorithms try to satisfy con-
straints one at a time, and in effect the constraints considered first are given a stronger strength
than those considered later.

However, there is an issue regarding comparators and Cassowary, which has not yet been resolved
in an entirely clean way. One of the public methods for Cassowary is addPointStays: points, as

27

discussed in Subsection 4.1. This method addresses the desire to satisfy the stays on both the x and
y components of a given point rather than on the x component of one point and the y component of
another.

As an example of why this is useful, consider a line with endpoints p1 and p2 and a midpoint m.
There are constraints (p1.x+p2.x)/2 = m.x and (p1.y+p2.y)/2 = m.y. Suppose we are editing m.
It would look strange to satisfy the stay constraints on p1.x and p2.y, rather than both stays on
p1 or both stays on p2. (This claim has been verified empirically — in earlier implementations of
Cassowary this happened, and indeed it looked strange.)

The current implementation of addPointStays: points uses different weights for the stay constraints
for successive elements of points, which is a kludge but which seems to work well in practice.

We had some trouble coming up with an example where it would give a bad answer — here is a
contrived one. Suppose we have a line with endpoints p1 and p2 and a midpoint m. Suppose also we
have constraints p2.x = 2*p3.x and p2.y = 2*p3.y. (This is a bit strange since here we are using p3 as
a distance from the origin rather than as a location — otherwise multiplying it by 2 is problematic.)
If we give these points to addPointStays: in the order p1, p2, and p3, then the stays on p1 will
have weight 1, those on p2 will have weight 0.5, and those on p3 will have weight 0.25. Then, a
one legitimate WSB solution would satisfy the stays on p1.x and p1.y, but another legitimate WSB
solution would satisfy the stays on p1.x, p2.y, and p3.y.

Here is a cleaner way to handle this situation. We first introduce a new comparator with the
dubious name of tilted-locally-error-better. The set of TLEB solutions can be defined by taking a
given hierarchy, forming all possible hierarchies by breaking strength ties in all possible ways to form
a totally ordered set of constraints, and taking the union of the sets of solutions to each of these
totally ordered hierarchies.

For example, consider the two constraints weak x = 0 and weak x = 10. The set of LEB solutions
is the infinite set of mappings from x to each number in [0, 10]. Assuming equal weights on the
constraints, the (single) least-squares solution is {x 7→ 5}. The TLEB solutions are defined by
producing all the totally ordered hierarchies and taking the union of their solutions. In this case the
two possible total orderings are:

weak x = 0, slightly weaker x = 10
slightly weaker x = 0, weak x = 10

These have solutions {x 7→ 0} and {x 7→ 10} respectively, so the set of TLEB solutions to the original
hierarchy is {{x 7→ 0} , {x 7→ 10}}.
As an aside, we hypothesize that the only psychologically plausible solutions to the example are
{x 7→ 0}, {x 7→ 5}, and {x 7→ 10}, but not, for example, {x 7→ 3.8}. (This hypothesis has not been
tested.) Another relevant question is whether users prefer any of these solutions over others (for a
given application domain).

Next, we introduce a notion of a compound constraint, a conjunction of primitive constraints, in this
case linear equalities or inequalities. For compound constraints, when we break the strength ties
in defining the set of tilted-locally-error-better solutions, we insist on mapping each linear equality
or inequality in a compound constraint to an adjacent strength. (We have been a bit imprecise in
the use of the term “constraint” in this paper, sometimes using it to denote a primitive constraint
and sometimes to denote a conjunction of primitive constraints. For the present definition, however,
we need to distinguish compound constraints that have been specifically identified as such by the
user from conjunctions of primitive constraints more generally, such as the constraints CS and CU

discussed in Section 2.1.)

28

Now, to define addPointStays: in a more clean way, we could make each point stay a compound con-
straint. To illustrate why this works, consider the midpoint example again. We have two endpoints
p1 and p2, and a midpoint m. There are constraints (p1.x+p2.x)/2 = m.x and (p1.y+p2.y)/2 = m.y,
and we are editing m. Then the stays on p1 and p2 will each be compound constraints:

weak (stay p1.x & stay p1.y)
weak (stay p2.x & stay p2.y)

In defining the set of tilted-locally-error-better solutions, the total orderings of these constraints
that we will consider have the stays on p1.x and p1.y both stronger than those on p2.x and p2.y, or
both weaker. This produces the desired result.

Note that it is not sufficient just to define a notion of “compound constraint” without adding the
notion of tilting — otherwise if we were using locally-error-better, we would just sum the errors of
the primitive constraints, which would allow us to trade off the errors arbitrarily and hence satisfy
the stay on the x component of one point and the y component of another.

Note also that none of these difficulties is a problem for least-squares-better comparators such as
the one that the QOCA algorithm uses — that comparator distributes the error to the x and y
components of all the points with stays of the same strength [6].

5 Empirical Evaluation

Cassowary has been implemented in Smalltalk, C++, and Java. We ran some simple benchmarks
using test problems which tried to add 300 randomly-generated constraints using 300 variables, and
900 randomly-generated constraints using 900 variables.

When running the Smalltalk implementation of Cassowary on the 300-constraint benchmark prob-
lem, adding a constraint takes on average 38 msec (including the initial solve), deleting a constraint
46 msec, and resolving as the point moves 15 msec. (Stay and edit constraints are represented
explicitly in this implementation, so there were also stay constraints on each variable, plus two edit
constraints, for a total of 602 constraints minus the constraints that, if added, would have resulted
in an unsatisfiable system.) For the 900 constraint problem, adding a constraint takes on average
98 msec, deleting a constraint 151 msec, and resolving as the point moves 45 msec. These tests
were run using an implementation in OTI Smalltalk Version 4.0 running on a IBM Thinkpad 760EL
laptop computer.

For the C++ implementation on the problem with 900 constraints and variables, adding a constraint
takes 40 msec, deleting a constraint 8 msec, and resolving as the point moves 8 msec. The Java
implementation under the basic Sun JDK 1.1.3 (no JIT compiler) is about 6 to 10 times slower than
the C++ implementation. These tests were run on a Pentium 200 running Linux 2.0.29.

The various implementations of Cassowary are being used actively. The first author is currently
embedding the C++ implementation in a X11 system window manager based on a Scheme configu-
ration language. A demonstration Constraint Drawing Application using the Java implementation
was written by Michael Noth and is available from the authors. A third Cassowary application cur-
rently being developed using a different Java implementation is a web authoring tool [5], in which
the appearance of a page is determined by the combination of constraints from both the web author
and the viewer.

29

Acknowledgments

Thanks to Kim Marriott, Peter Stuckey and Yi Xiao, co-developers of both Cassowary and the
closely related QOCA algorithm, for their help in this work, and for allowing us to reuse much of
our jointly authored UIST paper in this report.

This project has been funded in part by the National Science Foundation under Grants IRI-9302249
and CCR-9402551 and in part by Object Technology International. Alan Borning’s visit to Monash
University and the University of Melbourne was sponsored in part by the Australian-American
Educational Foundation (Fulbright Commission).

Additionally, the first author is supported by a National Science Foundation Graduate Research
Fellowship. Parts of this material are based upon work supported under that fellowship. Any
opinions, findings, conclusions, or recommendations expressed in this publication are those of the
author, and do not necessarily reflect the views of the National Science Foundation.

References

[1] David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In SIGGRAPH
’94 Conference Proceedings, pages 23–32. ACM, 1994.

[2] Alan Borning, Richard Anderson, and Bjorn Freeman-Benson. Indigo: A local propagation
algorithm for inequality constraints. In Proceedings of the 1996 ACM Symposium on User
Interface Software and Technology, pages 129–136, Seattle, November 1996.

[3] Alan Borning and Bjorn Freeman-Benson. The OTI constraint solver: A constraint library for
constructing interactive graphical user interfaces. In Proceedings of the First International Con-
ference on Principles and Practice of Constraint Programming, pages 624–628, Cassis, France,
September 1995.

[4] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp and
Symbolic Computation, 5(3):223–270, September 1992.

[5] Alan Borning, Richard Lin, and Kim Marriott. Constraints for the web. In Proceedings of ACM
MULTIMEDIA’97, November 1997.

[6] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving linear arithmetic constraints
for user interface applications: Algorithm details. Technical Report 97-06-01, Dept. of Computer
Science and Engineering, University of Washington, Seattle, WA, July 1997.

[7] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving linear arithmetic constraints
for user interface applications. In Proceedings of the 1997 ACM Symposium on User Interface
Software and Technology, October 1997.

[8] Richard Helm, Tien Huynh, Catherine Lassez, and Kim Marriott. A linear constraint technology
for interactive graphic systems. In Graphics Interface ’92, pages 301–309, 1992.

[9] Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. An object-oriented architecture
for constraint-based graphical editing. In Proceedings of the Third Eurographics Workshop on
Object-oriented Graphics, Champery, Switzerland, October 1992.

[10] Hiroshi Hosobe, Satoshi Matsuoka, and Akinori Yonezawa. Generalized local propagation:
A framework for solving constraint hierarchies. In Proceedings of the Second International
Conference on Principles and Practice of Constraint Programming, Boston, August 1996.

30

[11] Scott Hudson and Ian Smith. SubArctic UI toolkit user’s manual. Technical report, College of
Computing, Georgia Institute of Technology, 1996.

[12] T. Huynh and K. Marriott. Incremental constraint deletion in systems of linear constraints.
Information Processing Letters, 55:111–115, 1995.

[13] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R) language and
system. ACM Transactions on Programming Languages and Systems, 14(3):339–395, July 1992.

[14] Kim Marriott and Peter Stuckey. Introduction to Constraint Logic Programming. Mit Press,
1998.

[15] Brad A. Myers. The Amulet user interface development environment. In CHI’96 Confer-
ence Companion: Human Factors in Computing Systems, Vancouver, B.C., April 1996. ACM
SIGCHI.

[16] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, second edition, 1989.

[17] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way versus
one-way constraints in user interfaces: Experience with the DeltaBlue algorithm. Software—
Practice and Experience, 23(5):529–566, May 1993.

[18] Ivan Sutherland. Sketchpad: A man-machine graphical communication system. In Proceedings
of the Spring Joint Computer Conference, pages 329–346. IFIPS, 1963.

[19] Brad Vander Zanden. An incremental algorithm for satisfying hierarchies of multi-way dataflow
constraints. ACM Transactions on Programming Languages and Systems, 18(1):30–72, January
1996.

31

