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1  Introduction
Object identity is a fundamental and essential concept in object-oriented languages for at least two
reasons. First, object-oriented languages are often used to model aspects of the real world.1 Suppose
we have an object that models some phenomenon, e.g., a train reservation card (Figure 1a). A pro-
gram in which two variables local and express refer to this single object (Figure 1b) models a very
different situation from one in which local and express refer to different but equal objects. Second,
object identity is important to the programmer, and plays a key role in many programming idioms in
imperative object-oriented languages. If alpha and beta refer to the same object, a change to alpha is
immediately visible in beta (Figure 1c); whereas if alpha and beta refer to different but equal objects,
a change to alpha does not affect beta (Figure 1d).

Explicit relations are a fundamental concept in declarative constraint programming languages. Such
languages are designed such that the behavior of a program is independent of the underlying imple-
mentation strategy, and more specifically, independent of the order in which the constraints are

1.  This perspective on object-oriented programming has been articulated strongly by the designers of Simula
[Dahl & Nygaard 66, Krogdahl & Olsen 86] and Beta [Madsen et al. 93].

FIGURE 1. Uses of identity
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solved.2 This independence is achieved by requiring all relations, including any ordering or sequenc-
ing relations, to be stated explicitly as constraints.

Because a constraint imperative programming (CIP) language, such as Kaleidoscope’93 [Lopez et al.
93], is at once both a constraint language and an imperative object-oriented language, it should
include the fundamental and essential concepts of each. Thus, a CIP language must both have object
identity, and ensure that all relations are explicit.

In previous work [Freeman-Benson 91, Lopez et al. 93], we described the constraint imperative pro-
gramming framework, and successive designs and implementations of CIP languages: Kaleido-
scope’90, Kaleidoscope’91, and Kaleidoscope’93. In the CIP framework, constraints can have
various durations, including always (meaning that the constraint should be enforced throughout the
remaining duration of execution), once (meaning that the constraint should be enforced at that instant,
but then removed), and during (meaning that the constraint should be enforced for the duration of a
particular loop; usually for the duration of a user interaction). To reconcile imperative state change
with declarative constraints, an assignment statement, such as x := x+5, is regarded as a once con-
straint relating successive states of its variables.

In the CIP framework, equality constraints (which allow objects to maintain separate identities but to
have equal slot values) can replace many common uses of identity from conventional object-oriented
languages. This replacement helps to guard against unintended side effects, e.g., Figure 1(c & d). The
Kaleidoscope’90 design viewed identity as an implementation technique for improving efficiency, but
not as a semantically significant language element. We now regard this as incorrect: identity is signif-
icant both for modelling the real world and for use in many practical programming idioms (for exam-
ple, traversing linked lists or building cyclic graphs).

At first glance, it would seem that overcoming the “CIP Identity Gap” is easily done by adding con-
ventional constructs for object identity, such as pointers. However, in a CIP language, there are a
number of subtle interactions between object identity and constraints. In the remainder of this paper,
we explore these interactions, list goals for a reconciliation of object identity with constraints, and
describe our solution from Kaleidoscope’93. We also discuss a number of plausible, but less accept-
able, alternative designs.

2  Goals
As noted previously, in our earlier work on constraint imperative programming, we treated object
identity as a technique for improving the efficiency of the implementation, but not as a part of the lan-
guage semantics. Other CIP languages, e.g., Siri [Horn 92, Horn 93], have a traditional notion of
object identity, but restrict constraints to operate within the bounds of their defining object. As
described in the introduction, we now believe that a CIP language should fully support a notion of
object identity in its semantics. We therefore propose the following goals for combining object iden-
tity and constraints:

1. Mutable State. The language should support objects with mutable state.

2. Constrained Values. The language should support constraints over object values. (An expanded
list of goals for such constraints is given in a previous ECOOP paper [Freeman-Benson & Borning
92]; all of those goals remain important for our current design efforts.)

3. Object Identity. The language semantics should include object identity in addition to object
equality.

4. Identity Constraints. Specifying that a variable should refer to a specific object should be done
using constraints. Insofar as possible, these identity constraints should be analogous to value con-
straints, and should be integrated smoothly with them.

2.  See [Freeman-Benson et al. 90] or [Leler 87] for an overview of constraint systems and languages.
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5. Evolution. The object identity model should seem reasonable to a user of a standard object-ori-
ented language, and should be a natural evolutionary step.

6. Efficiency. The constructs for identity should be efficiently implementable. If a program uses no
constraints beyond the analog of standard assignment statements, then it should be possible to
compile the source code to be competitive with standard object-oriented languages.

In conjunction with these goals, we have identified a number of core issues faced by designs for iden-
tity in constraint imperative languages:

• Identity mechanisms permit multiple variables to refer to the same object. How is this expressed
and controlled?

• Is it by conventional assignment statements or by identity constraints?
• If by identity constraints, can identity constraints be one-way, multi-way, or both?
• If by identity constraints, are weak identity constraints allowed?
• What relation is used to retain values for objects in the absence of stronger constraints to change

these values? Equality? Identity?
• How are the durations of identity relationships expressed?
• When an identity relation become inactive, what happens to the identity of previously constrained

objects?
• In what situations can unconstrained aliasing arise?

3  Equality versus Identity
Identity and equality are similar in many respects, and thus are often confused or misused in a lan-
guage that does not sufficiently support both. One reason for this is obvious: if two values are identi-
cal, then they are clearly equal. Thus, in a language with support for identity but not for explicit
equality constraints, the most convenient mechanism for ensuring that two values are equal is to make
them identical. (In other words, if variables x and y should refer to equal values, we achieve this by
aliasing x and y.) C++ and Smalltalk fall into this category of languages. Their support for identity is
via pointers and pointer assignment.

If a language with adequate support for explicit equality relations is available (e.g., a CIP language),
then equality is often a better choice than aliasing. For example, suppose that we have a CAD system
for designing railroad cars and are using it to design two similar funicular cars. The cars should have
the same seating layout, but they are not identical: one has right-hand side doors, the other left-hand
side. The following code reflects this situation. (See also Figure 2a, in which the grey line indicates
the equality constraint).

car1.seating = car2.seating; /* An enforced equality relation, not an equality test. */
car1.doors := left;
car2.doors := right;

The two cars are modelled correctly as distinct objects, and the explicit equality constraint between
their seating layouts ensures that any changes to one will be automatically reflected in the other

FIGURE 2. Equal but not identical
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(Figure 2b). Even if car1 were to change, e.g., through assignment, the change would still be reflected
in car2 (Figure 2c):

car1.seating := presidential_seating;
In contrast, if car1.seating and car2.seating were aliased, they would also be equal, but their equality
would be implicit rather than explicit. Furthermore, this implicit constraint could be broken by an
action as innocuous as an assignment (Figure 3(a,b,c)).

However, equality alone is not sufficient for an object-oriented language. First, it does not handle the
systems modelling aspect of object identity. Second, it does not handle many common programming
idioms used in object-oriented programs. To illustrate this second point in a simple context, consider
the problem of specifying a circular list. The desired structure is easy to specify in an imperative lan-
guage with pointers. For example, in Common Lisp:

Using constraints in Kaleidoscope, we might try:

a.head = 3;
a.tail = a;

However, because the constraints only imply equality and not identity, they could be satisfied by an
infinite number of different graph structures, including a non-circular, infinite list:

One might try adding a minimality condition to the constraint solver such that it returned the solution
with the smallest number of cons cells—but what if a two cell list was what we really wanted? Even
if a one-cell list was wanted, given the importance of object identity for system modelling, we would
like to give the programmer more explicit control. Identity is clearly a better solution here. With iden-
tity constraints, the single-cell circular list can be specified as:

a.head = 3; /* An enforced equality constraint. */
a.tail == a; /* An enforced identity constraint. */

4  Our Design
The basic constraint that two variables x and y be identical is written x == y. A number of annotations
are available in Kaleidoscope for value constraints: namely, read-only annotations on variables,
strengths on constraints, and the constraint durations once, during, and always. A read-only annotation
on a variable indicates that constraint may not affect the value of that variable, so that operationally,
the satisfier must change another variable or variables instead to satisfy the constraint. (A declarative
semantics for both read-only annotations and strengths is given in [Borning et al. 92].) A strength of
required indicates that the constraint must be satisfied, while other strengths indicate that the con-

FIGURE 3. Identical but only implicitly equal
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straint should be satisfied if possible, but that it is not an error if it cannot. Finally, as described previ-
ously, durations indicate the period during which the constraint is in force. All of these annotations are
available for identity constraints as well. For example, once: x==y indicates that the identity con-
straint should be enforced, and immediately afterward the constraint is no longer active, while always:
x==y? is always active, but can only be satisfied by changing the identity of x, not that of y.

The assignment statement for values v := expr in Kaleidoscope is equivalent to the following pair of
constraints:

once: temp = expr?;
once: v = temp?;

For example, x := x+5 results in evaluating x+5, storing the result in temp (since x+5 is annotated as
read-only, changing temp is the only way of satisfying this constraint), and then storing the value of
temp back in x. A similar shorthand for identity-based assignment is available as well: v :== expr,
which is equivalent to:

once: temp == expr?;
once: v == temp?;

4.1  Multi-Way vs. One-Way; Once vs. Always

All four kinds of identity constraints are essential in our design: one-way and multi-way; once and
always. Parameter passing uses multi-way always identity, type invariants (see Section 4.5) use both
types of always identity, and common programming idioms use one-way once identity.

Parameter Passing. Procedures in Kaleidoscope are similar to methods in traditional object-oriented
languages. Constraint constructors are special procedures that define the meanings of non-primitive
constraints. For example, here is the + constructor for cartesian points:

constructor + (p,q: Point) = (r: Point);
p.x + q.x = r.x;
p.y + q.y = r.y;

end constructor +;
Parameters to procedures and constraint constructors are passed “call-by-identity” using multi-way
always identity constraints:

FIGURE 4. Parameter passing: equality vs. identity
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• Identity rather than equality. If equality were used, then statements manipulating the identity of
objects could not be encapsulated in a procedure. As an example, Figure 4 illustrates the list data
structure L before the following procedure (a), after using identity parameter passing (b), and after
using equality parameter passing (c).

procedure remove_one(d)
d.next :== d.next.next;

end procedure remove_one;
remove_one(L);

• Multi-way rather than one-way. Otherwise, constraint constructors would be restricted to use
some of their arguments as inputs and some as outputs, contrary to the normal multi-way spirit of
constraints. Consider the following example:

constructor celsius_to_fahrenheit(in c, out f)
c * 1.8 = f - 32.0;

end constructor celsius_to_fahrenheit;
celsius_to_fahrenheit( danish, american );
danish := 8; /* works correctly: danish A c =…= f A american */
american := 56; /* does not work because american cannot flow into f */

• Always rather than once. This allows other always constraints created during procedure execution
have effect beyond the life of the procedure. As an example, Figure 5 illustrates the data structures
when always or once identity constraints are used to pass parameters to make_the_same:

/* assume x and y contain Rectangles */
procedure make_the_same(a,b)

always: a == b;
end procedure make_the_same;
make_the_same(x,y); /* Figure 5a (always) and Figure 5c (once) */
x :== new Oval; /* Figure 5b (always) and Figure 5d (once) */

Programming Idioms. For many common programming idioms, one-way, rather than multi-way,
identity constraints are essential. For example, consider the following code to redisplay the active
windows by iterating through a list. Because each Window object is a proxy for an operating system
data structure, the system should use those objects, not equal copies of them.3

w :== Screen.ActiveWindows;
while w & nil do

display(w.head);
 w :== w.tail;

end while;
As described above, the two assignments, w :== Screen.ActiveWindows and w :== w.tail, are equiva-
lent to once one-way identity constraints. Clearly we want these to be once rather than always con-
straints — otherwise w would be permanently bound to the entire list of active windows, and could
not march down the list. We further want one-way rather than multi-way constraints here (for exam-
ple, we want to make sure that the assignment statement w :== Screen.ActiveWindows results in
changing w rather than Screen.ActiveWindows).

Other Uses. Supplying the same annotations and durations for identity constraints as for value con-
straints allows identity constraints to fit neatly in the familiar CIP constraint model. In addition, spec-
ifying identity with constraints gives additional power beyond that available in a more traditional
language: for example, in a debugging application, one can use an always identity constraint to track
the identity of the object referred to by some variable.

3.  If objects have termination routines, such as C++ destructors, then creating and destroying equal copies of
proxy objects can have harmful side-effects. For example, when the copy is destroyed, its termination routine
may release the external resources while other copies of the proxy object are still active. Even if the program
would execute correctly with equal copies rather than the single window, we believe that programmers would
like to have control over this aspect of their program (Goal 5 — Constraint imperative programming as an evolu-
tionary advance on current object-oriented programming languages).
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4.2  Stay Constraints

As described in the introduction, to reconcile imperative state change with declarative constraints, we
may view a variable as consisting of a stream of successive states. In this view, an assignment state-
ment, e.g., x := x+5, is a once constraint relating successive states of its variables. Additionally, to
ensure that variables remain the same over time in the absence of some stronger influence, the lan-
guage automatically provides very weak stay constraints between the successive states. In Kaleido-
scope’93, these stay constraints are weak identity constraints, so that a variable will continue to point
to an object with the same unique ID as time advances.

In contrast, in our original Kaleidoscope’90 design, stay constraints were equality constraints, so that
there was no way to talk in the language semantics about the identity of an object through time. In
addition, in Kaleidoscope’90, variables literally were represented as streams of values, and assign-
ments were implemented as constraints (resulting in a correct but very slow implementation).

The shift to stay-as-identity in Kaleidoscope’93 has allowed us to make a major optimization in our
implementation: namely, variables are implemented in a conventional fashion, as locations in mem-
ory that refer to a block of storage representing a given object. While semantically an assignment
statement remains a constraint between successive states of a variable, the implementation need store
only one state. As the program executes, it perturbs the values of certain objects, resulting in the acti-
vation of the constraint satisfier, which then returns the object store to a consistent state.4

4.3  Unconstrained Aliasing

Constraints are enforced only while active, i.e., as soon as the constraint becomes inactive, it has no
further effect. Thus a once constraint is only momentarily active, and an assert-during constraint is
only active during the execution of the associated block of code. But, while the effect of an inactive
value constraint is gone, its result may remain, and the relation may happen to continue to hold. For
example, suppose we have a constraint A+B=C. While the constraint is active, the values in the A, B,
and C variables have a plus relation, say, 4, 5, and 9. When the A+B=C constraint is removed, the val-
ues may remain in a plus relation, but there is no further enforcement of the plus constraint. (For
example, if C were subsequently changed, there would be no change in A or B if there were no other
constraints relating them.)

In contrast, in the case of an identity constraint, this accidental satisfaction of the constraint beyond its
declared duration can have an effect. Consider the situation when alpha and beta are constrained to be
identical (i.e., they are aliased) and then the identity constraint is removed. While they are con-
strained, they will obviously refer to the same object. When the constraint is removed, they will con-
tinue to refer to the same object until one or the other is re-directed, since identity is used for stay
constraints. We term this situation unconstrained aliasing. (In the compiler literature, this phenome-
non is termed accidental aliasing, but we use the term unconstrained aliasing instead since the alias-
ing may be deliberate even though unconstrained, e.g., the Programming Idioms example previously.)
Obviously, always identity constraints cannot give rise to unconstrained aliasing and thus should be
used when possible.

4.  The stream model of Kaleidoscope’90 is an instance of the refinement model for constraint systems. In this
model, constraints are accumulated as the computation progresses. There is never a notion of retracting a value,
only of accumulating additional information and refining the permissible values of variables. In contrast, the
Kaleidoscope’93 implementation uses the perturbation model for constraint systems. In this latter model, at the
beginning of a computation step there is a state of the system, which satisfies all the required constraints, and
which satisfies the preferential constraints as well as possible. The system is perturbed, for example by an assign-
ment or by a user input event; and the constraints are then re-satisfied. The refinement and perturbation models
are compared at greater length in [Borning et al. 92].



Constraints and Object Identity

page 8 of 15

As an illustration of the problems that can arise from unconstrained aliasing, compare

a := Point.new;
once: a.x = 0;
once: a.y = 0;
once: a == b; /* note that this is an identity constraint */
once: a.x = 5; /* b.x changes to 5 */

with

a := Point.new;
once: a.x = 0;
once: a.y = 0;
once: a = b; /* note that this is an equality constraint */
once: a.x = 5; /* b.x is unaffected */

In the first example, the once identity constraint still has an effect after its duration, since a and b
remain identical, so that b.x is also set to 5. In the second example, the once equality constraint has no
effect after it is removed, and b.x remains 0.

In many cases, however, this unconstrained identity is the desired result. For example, consider again
the code shown in Section 4.1 that redisplays a list of active windows by iterating through them.

w :== Screen.ActiveWindows;
while w & nil do

display(w.head);
 w :== w.tail;

end while;
The two assignments, w :== Screen.ActiveWindows and w :== w.tail, are equivalent to once one-way
identity constraints. They change the identity of w to elements of the list, but the use of that element is
after the once constraint has become inactive. In other words, this program relies on the uncon-
strained aliasing of two variables.

4.4  Report Card

In Section 2 we listed a number of goals for combining object identity and constraints. Goals 1, 2, and
3 (support for mutable state, constrained values, and object identity) are clearly achieved by the
design. Goal 4 stated that specifying that a variable refer to a specific object should be done using
constraints, and that insofar as possible, these identity constraints should be analogous to value con-
straints, and integrated smoothly with them. We believe that this goal has mostly been achieved, and
that our design for identity constraints is more nearly analogous to that for value constraints than the
alternatives described in Section 6. The principal difficulty here is unconstrained aliasing, which does
not seem entirely harmonious with the existing mechanism for constraints on values. In Kaleido-
scope’93, we have chosen to live with unconstrained aliasing, despite its problems — all of the other
solutions we considered either exhibited the same capacity to construct unconstrained aliases, or were
insufficiently expressive (see Section 6). Also note that unconstrained aliasing is not new with CIP
languages — any language with pointers, and in particular all traditional object-oriented languages,
allow unconstrained aliasing.

The question as to whether Goal 5 is achieved (the object identity model should be a natural evolu-
tionary step from current practice) is more subjective; however, again we believe that it is, particu-
larly when the Kaleidoscope semantics is presented in terms of the perturbation model of constraints
discussed in Section 4.2. Efficiency (Goal 6) is much improved over our Kaleidoscope’90 implemen-
tation, but is still very slow compared to that of a well-engineered implementation of a more conven-
tional object-oriented language. We are continuing to work on improving our implementation — a
key issue here will continue to be avoiding costly runtime constraint satisfaction by doing as much
constraint satisfaction as possible at compile time.
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4.5  Type Invariants

Besides addressing our goals, identity constraints enforce particular categories of invariants on
instances of a class, similar to Klarlund and Schwartzbach’s graph types [Klarlund & Schwartzbach
93]. For example, doubly-linked lists in Kaleidoscope’93 can be expressed as

class DList subclass of Object;
var prev: DList;
var next: DList;
var cell;

end class DList;

procedure initially (d: DList)
always: if d.next & nil then d.next.prev == d?;

end procedure initially;
The initially procedure is similar to a C++ constructor or Emerald initially clause, and is executed
every time an instance of DList is created. This procedure adds a constraint which will cause all oper-
ations on DList cells to obey the doubly-linked invariant. A programmer writing a procedure to per-
forming list surgery, such as insert_before or insert_after below, need not explicitly include code to
enforce invariants on cells. In contrast, insertion in a strictly imperative language would require oper-
ations to make sure that two newly linked cells mutually reference each other, by re-satisfying
implicit constraints on elements of linked lists. Since type invariants are explicit in Kaleidoscope’93,
program errors are avoided, since methods cannot contradict constraints on members of a type. Type
invariants may also include value constraints in addition to identity constraints.

procedure insert_before(new: DList, d: DList)
if d.prev & nil then
d.prev.next :== new;
new.next :== d;

end procedure insert_before;

procedure insert_after(new: DList, d: DList)
var temp: DList;
temp :== d.next;
d.next :== new;
new.next :== temp;

end procedure insert_after;
There are particular class invariants that are handled by graph types but that cannot be enforced by
identity constraints, such as specifying binary trees where all leaves are linked in a cycle. Identity
constraints can be used to define an instance of such a class, but identity constraints cannot maintain
this invariant after making arbitrary mutations to an instance. On the other hand, identity constraints
differ from graph types since they allow one variable to track another variable for some limited dura-
tion of time.

5  Implementation
In the Kaleidoscope’93 VICS constraint framework [Lopez et al. 93], constraints are grouped and
solved according to their type: class/type constraints, identity constraints, and value/structure con-
straints. This independence allows Kaleidoscope to use a different specialized solver for each group,
rather than a single more general, but less efficient, algorithm that can handle all kinds of constraints.

In the Kaleidoscope virtual machine, variables are implemented as slots containing pointers to
objects, and objects as sets of slots, i.e., a contiguous region of memory. Identity constraints are
implemented as equality constraints on the values of the slots, whereas value constraints constrain the
contents of the memory pointed to by the slots. Using the VICS framework, identity constraints are
satisfied before satisfying value constraints due to the need to determine the identity of an object (its
address in memory) before determining its value (the contents of the memory at that address). The
identity-equality constraints are efficiently solved by our current incremental local propagation con-
straint hierarchy solver, CobaltBlue. (Further information on our local propagation algorithms can be
found in [Freeman-Benson et al. 90, Sannella 93].)



Constraints and Object Identity

page 10 of 15

Design Goal 6 states that identity constraints should be efficiently implementable. Our constraint
solver is quite efficient (see [Sannella 93] for details). However, given the ubiquitous nature of con-
straints in Kaleidoscope (many of which are trivial), higher performance can be achieved by not using
the solver at all. Due to the explicit nature of constraints in Kaleidoscope (as opposed to the implicit
nature of aliasing in a traditional object-oriented language), the Kaleidoscope compiler can pre-solve
many constraints and thus bypass or reduce the run-time use of the constraint solver. While we have
not yet begun to develop this capability in earnest, our current compiler detects and pre-solves several
very common uses of identity constraints, including those used in assignments, parameter passing,
and stays.

6  Some Plausible Alternative Designs
We considered many other designs for integrating constraints and object identity in Kaleidoscope’93.
Each of these designs failed to meet some of the design goals listed in Section 2. We describe here
some of the most plausible ones as an illustration of the design space from which we chose the Kalei-
doscope’93 solution.

6.1  Object Identity Not Semantically Significant

As a result of having constructs for object identity, traditional object-oriented languages allow uncon-
strained aliasing. Unconstrained aliasing poses additional problems for CIP languages, since these
undeclared relations can yield unexpected results for value constraints. One solution that we consid-
ered was simply to eliminate object identity as a part of the language semantics, relegating it to part of
the compiler implementation strategy only. In other words, such a design would prohibit constructs
that enable variables to bind to a specific object, and hence aliasing. This design was adopted by
Kaleidoscope’90. Equality constraints replace object identity in most cases.

Probably the most important defect of this design is that object identity is fundamental to the use of
object-oriented programming for systems modelling, and should hence be part of the language seman-
tics. In addition, there were problems coding particular programming idioms. For example, consider
the circular list example in Section 3:

a.head = 3;
a.tail = a;

Without a way to refer to the identity of an object, this object could be represented by an infinite list
with no particular choice of structure. However, if the constraint:

a.tail.head = 1;
were added, then the choice of object structure to satisfy the initial constraints becomes visible, e.g.,

Without operations to control identity, the programmer has little control over these choices for object
structure. Representing structures such as threaded trees, doubly linked lists, and cyclic graphs is dif-
ficult without some means of controlling object identity.

6.2  Conventional Object Identity

In a typical object-oriented language, after an assignment statement is executed, the variable on the
left hand side of an assignment refers to the object generated from the expression on the right hand

1 3 1 … 3 1 3

(1 1 1 1 …) (3 1 3 1 …) (3 1 3 3 …)
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side. If the expression on the right hand side is a variable, then the two variables are aliased. For
instance, the statement:

a := b;
causes variables a and b to refer to the same object. Message sends to one of the aliased variables will
be visible by the other variable (Figure 1c). Note that assignment produces no explicit constraint
between a and b. This model is used in Smalltalk, Common Lisp, and other languages.

The obvious advantage of identity assignment is that aliasing is simple and familiar. This would sat-
isfy our goals of being able to represent objects with self-reference (e.g., circular lists), supporting a
straightforward semantics for aliasing two variables, and designing an object identity model that is
plausible to the imperative programmer.

Conventional object identity falls short of Goal 4, since conventional identity constructs do not use
constraints. If alpha were aliased to beta by assignment, then value constraints on alpha would mutate
beta even though there is no constraint between the two variables. This would be a satisfactory solu-
tion in a language without constraints, but we would like all (or at least most) relationships between
variables to be visible among the active constraints.

Conventional object identity is a special case of the identity constraints described in Section 4. Iden-
tity assignment is equivalent to restricting the language to use once one-way identity constraints.
Such once constraints allow the identity of a variable to be changed without the creation of a long-
lived constraint to continue enforcing the relationship. Many situations where one would use a con-
ventional identity construct can be replaced by constructs such as always identity constraints, which
protect against unconstrained aliasing. Furthermore, always identity facilitates call-by-identity in
binding actuals and formals as described in Section 4.1. Generalizing identity assignment in this way
is powerful, since it allows identity relationships to persist beyond the initial identity change.

Specifying identity using constraints is an appealing design goal and is well-suited for the CIP family
of programming languages. In previous work, we modelled assignment as constraints across succes-
sive states of a system. Identity as a constraint continues this theme of modelling imperative con-
structs with declarative constraints.

6.3  Pointer Variables

The pointer variable solution uses standard equality to achieve the effect of identity. To alias two vari-
ables, a and b, an equality constraint is placed between pointer variables referencing a and b as fol-
lows:

a, b: List;
x, y: ref(List);
x = ref(a);
y = ref(b);
always: x = y;

All aliasing is performed by equating these pointer variables. The major advantage of pointer vari-
ables is that aliasing is simply normal equality between pointer variables, a familiar construct to CIP
programmers. The advantage over the Kaleidoscope’93 design is that there is no distinction between
identity constraints and value constraints since ordinary equality constraints are used for aliasing.

One drawback of pointer variables is the extra complexity they introduce — programmers must now
distinguish between normal and pointer variables when writing code. Additionally, using the same
symbol for two distinct concepts (value equality and object identity) is confusing, much as the heavily
overloaded & symbol can be confusing to C++ programmers. We believe that introducing extra com-
plexity for the programmer just to simplify the implementation is a poor language design — the goal
of Kaleidoscope is to make reading and writing programs easier!

Similar to identity constraints, the pointer variables alternative satisfies all of the design goals. It is as
general as multi-way identity constraints, since equality constraints can be annotated with different
durations, or restricted to a one-way constraint by use of read-only annotations. Unconstrained alias-
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ing is also a possible consequence of using pointer variables. This occurs if two variables are aliased
for a fixed duration, since they remain aliased by the default once equality constraint that is no longer
active.

As should be clear from the above discussion, a design using pointer variables would be a very rea-
sonable alternative to the one we selected. Until we gain more experience with writing Kaleidoscope
programs, it is difficult to say that one design is clearly preferred over the other.

7  Related Work
Aliasing has long been a concern in programming language design. Languages such as Euclid [Lamp-
son et al. 81] impose syntactic restrictions to eliminate unconstrained aliasing. Khoshafian and Cope-
land [Khoshafian and Copeland 86] relate the concept of object identity as used in programming
languages and in databases. In object-oriented languages, the concept of islands is useful in protecting
the user from some of the pitfalls of aliasing while supporting essential uses [Hogg 91]. Identity con-
straints serve as a form of alias advertisement [Hogg et al. 92], by making identity relationships
explicit.

There has also been a great deal of research on detection of aliases in the compiler community [Landi
& Ryder 92]. Static detection of aliases facilitates code optimizations for cases where code can guar-
antee no aliasing. In CIP languages, the ability to bypass expensive constraint operations by compil-
ing imperative code to perform these operations is enhanced by detection of aliasing. Utilizing these
techniques will improve performance of generated code for constraint satisfaction.

Graph types are a declarative means of describing invariants on object structure [Klarlund &
Schwartzbach 93]. Identity constraints are similar to graph types in their ability to maintain invariants
on structure such as preserving doubly linked list invariants while performing list surgery on doubly
linked lists. Unlike identity constraints, graph types do not tie one particular variable to another.
Instead, objects are linked by navigating through regular expressions over the object structure. If the
object structure changes, then these links change, allowing objects to reference different objects in
order to satisfy invariants on the data type. Since identity constraints link specific variables, invariants
on a data type which depend on particular variables to be linked can be modelled by identity con-
straints. Identity constraints cannot enforce relations whose identity depends on a general change to
the structure of an object.

In CIP languages, Kaleidoscope’90 used equality constraints in place of object identity; object iden-
tity was regarded as an implementation technique for equality and was not considered to be a part of
the language semantics. In other work on CIP languages, Siri [Horn 92, Horn 93] has a traditional
notion of object identity, but restrict constraints to operate within the bounds of their defining object.
Li’s language [Li 92] provides always and for-now constraints rather than always and once. The active
duration of a for-now constraint is until another for-now constraint is enforced on the same variable,
i.e., its active duration is the same as its effective duration. We considered for-now durations for iden-
tity constraints in Kaleidoscope’93, but for-now does not eliminate or reduce unconstrained aliasing.
Rather than include additional durations in the language, we decided to remain with the familiar once,
always, and during model.

An different approach to the problems introduced by object identity is simply to outlaw it. This is the
approach taken, for example, in pure functional programming languages, such as Miranda or Haskell
[Hudak 89]. Similarly, in pure logic programming languages, there is no notion of object identity as
such: if variables x and y refer to two ground atoms or terms, it is of no concern to the programmer
whether in the implementation there is one shared term or two equal terms. This is also the case for
variables, or terms containing variables — unifying two logic programming objects is best regarded
as setting up an equality constraint between them; again, whether structure is shared or not should not
be visible to the programmer. (Indeed, one can show that pure Prolog is an instance of the Constraint
Logic Programming language scheme [Jaffar & Lassez 87], where the domain of the constraints is the
Herbrand Universe.)
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In concurrent logic programming languages [Shapiro 89] and in the cc (concurrent constraint) lan-
guages [Saraswat 89], it is possible to model object-oriented programming, including state, by repre-
senting objects as perpetual processes that consume a stream of messages [Kahn 89]. In these
languages, each reference to an object is represented as a message stream. To have two different refer-
ences to an object, it is necessary to have two separate streams, which are then merged to produce a
single message stream that is fed to the process representing the object. Recently, Saraswat and others
have generalized the cc paradigm to timed concurrent constraint (tcc) programming [Saraswat et al.
94], permitting the programming of reactive real-time systems. These tcc languages are quite close to
the CIP language family in spirit. (Some important differences are that the cc and tcc languages sup-
port concurrency and allow a store containing partial information, while Kaleidoscope supports con-
straint hierarchies for expressing defaults and preferences.) However, support for object identity in
the cc and tcc languages is handled in effect as in the design described in Section 6.2; object identity
is not specified using constraints.

8  Concluding Remarks
While there are a number of plausible designs for integrating declarative constraints with imperative-
style object identity, only two meet all six of our goals. We chose the one-way identity constraint
design, rather than the pointer variable equality design, because we preferred to keep the Kaleido-
scope’93 semantics as simple as possible. Section 4.3 demonstrated that identity constraints do not
eliminate unconstrained aliasing, and the example in Section 4.1 illustrated that such aliasing can be
intended and useful. In many cases, however, using always identity constraints can reduce uncon-
strained aliasing as well as assist the compiler in producing better code.

Graph types are capable of satisfying complex constraints on structure that cannot be enforced by
value and identity constraints in existing CIP languages. We plan to investigate extensions to identity
constraints to enforce a wider set of constraints on object structure. Such an extension would allow
complex invariants on object structure to be enforced after an object is initialized, thus simplifying the
programming task for such data structures, and ensuring that methods do not violate class invariants.

We have argued that, just as object identity is an essential concept in standard object-oriented lan-
guages, it is also essential in CIP languages. In CIP languages, identity constraints can provide a pow-
erful, understandable and efficiently implementable approach to supporting object identity.
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