
The Design and Implementation of Kaleidoscope’90,

A Constraint Imperative Programming Language

Bjorn N. Freeman-Benson Alan Borning
University of Victoria Department of Computer Science

Department of Computer Science and Engineering, FR-35
Box 3055 University of Washington

Victoria, B.C. V8W 3P6 Seattle, Washington 98195
CANADA USA

bnfb@csr.uvic.ca borning@cs.washington.edu

Abstract
Two major paradigms in computer programming

languages are imperative and declarative program-
ming. We describe a scheme for languages that inte-
grate specific features from these two paradigms into
a new framework: Constraint Imperative Program-
ming. Along with the framework, we discuss the de-
sign and implementation of a particular instance of
this framework, Kaleidoscope’90. From the imperative
paradigm, constraint imperative programming adopts
explicit control flow, state, and assignment. From
the declarative paradigm, it adopts explicit, system-
maintained constraints (relations that should hold).
There is a strong practical motivation for making
this integration: in a typical application, some por-
tions are most clearly described using imperative con-
structs, while other portions are most clearly described
using constraints. By using a constraint imperative
language, the most suitable paradigm can be used as
appropriate.

1 Introduction
We propose to combine two simple techniques—

declarative constraint programming and object-
oriented imperative programming—to construct a pro-
gramming language that allows programming of a new
kind. A constraint is a system-maintained relation, for
example, that a + b = c, that the width of a screen
rectangle be twice its height, or that the colors in
two rectangles on the screen be the same. Imperative
programming includes state, destructive assignment,
and sequencing. The variety of imperative program-
ming that we use in our design and implementation
is object-oriented, which adds both additional power
and complications.

We are motivated to integrate these techniques in

one language because, in a typical application, there
are some portions that are most clearly and conve-
niently described using constraints, and other portions
that are most clearly described using imperative con-
structs. This integration is difficult because of the fun-
damental differences between the two paradigms—the
very same dichotomy that makes the result interesting
and useful. These basic differences are in the storage
model, the computation model, the flow of control,
and the data types.

In this paper we describe these differences in more
detail, and then discuss a framework, Constraint Im-
perative Programming (CIP), that integrates the two
paradigms. We also present a new programming lan-
guage, Kaleidoscope’90, that is an instance of this
framework. Kaleidoscope’90 has been implemented,
and various sample programs have been executed.
This paper is based primarily on Freeman-Benson’s
recently completed Ph.D. dissertation [11]. Reference
[7] is a preliminary conference paper on Kaleidoscope,
while [8] discusses in detail issues that arise when in-
tegrating objects and constraints.

2 A Motivating Example

Consider the scroll bar shown on the
left. The scroll bar has “up” and “down”
buttons and a “thumb.” The size of the
thumb is proportional to the number of
lines of the document that are visible in
the scrolled window. Pressing the up but-
ton scrolls the text up one line; similarly
for the down button. If the mouse is
clicked in the gray region above or below
the thumb, the scroll bar moves by one
page. Finally, the thumb can be dragged

directly with the mouse to a new position.

Properties of this scroll bar that are conveniently
described using constraints include:

• the position of the top of the thumb is propor-
tional to the number of lines of the displayed doc-
ument that are scrolled off the top of the window.
This constraint may be coded as:

always: thumb.top = bar.top -

bar.height *

(document.first visible /

document.total lines);

• the height of the thumb itself is proportional to
the percentage of the document that is visible in
the window:

always: thumb.height = bar.height *

(document.visible lines /

document.total lines);

• the area within the thumb is colored white on the
display (other constraints control the scrollbar’s
visibility as its window is overlapped or clipped):

always: thumb.interior.color = White;

We would like these constraints to be multidirec-
tional and automatically maintained. For exam-
ple, if the user drags the thumb of the scroll
bar, the position constraint mentioned above would
be used in one direction to scroll the docu-
ment (document.first visible := ... thumb.top

...), whereas if some other activity scrolls the doc-
ument, the constraint would be used in the other di-
rection to update the thumb position (thumb.top :=

... document.first visible ...). Further, the
programmer should be able to simply state the third
constraint, and leave it to the underlying compiler and
runtime system to ensure that the graphical appear-
ance of the thumb is maintained correctly.

Other properties of the scroll bar are more conve-
niently described using imperative constructs, for ex-
ample, the object’s behavior when the user clicks on
the up button:

if inside(up button, mouse.location) then

document.first visible :=

document.first visible -

document.one page;

end if;

Finally, some properties are most succinctly de-
scribed using a combination of constraint and imper-
ative constructs. For example, if the mouse button is
pressed while the mouse is within the thumb rectan-
gle, then as long as the button is held down, a con-
straint that the thumb position tracks the mouse posi-
tion should be active; when the button is released this
constraint becomes inactive. Naturally, during this
interaction, all other constraints are maintained, in
particular the display constraints that keep the screen
image up-to-date. This behavior is coded as:

if (mouse.button = down) then

if inside(thumb, mouse.location) then

offset := thumb.center - mouse.location;

while (mouse.button = down) assert

medium thumb.center = mouse.location

+ offset;

end while;

end if;

...

end if;

3 Integrating the Paradigms
As noted in the introduction, integrating constraint

and imperative programming is difficult because of the
fundamental differences between the two paradigms.
These differences are in the storage model, the compu-
tation model, the flow of control, and the data types.

3.1 The Donor Paradigms: Imperative
and Constraint

The imperative paradigm is based on the Von Neu-
mann model of a stored program computer: an in-
struction processor and a data store.1 Each location
in the value store is mapped to exactly one value. The
value store can only be updated by a destructive write.
Further, because each location can potentially contain
a different value at any given time, we can consider the
value store as a function Time × Location → Value.
The instruction processor fetches and executes four
basic kinds of instructions: read a value from the value
store, destructively write a value to the value store,
compute some function of values, and branch (condi-
tionally or unconditionally) to another location in the
instruction store.

The constraint paradigm per se has no instruction
processor or data store. Rather, a constraint program
can be represented by a hyper-graph in which the
nodes are variables and hyper-edges are constraints.
Each variable holds a set of values: the set of all values
that are consistent with the constraint graph. How-
ever, this set is constant for a given constraint graph,
i.e., the only mechanism for changing the set of val-
ues is to operate on the graph from some external
driver program. The graph can thus be considered as
a function Location → SetOfValues where Location is
a variable name.

Constraint imperative programming is thus an in-
tegration of the active portions of its two donor
paradigms: the imperative paradigm consists of an
active instruction processor and a passive value store,
whereas typical constraint systems consist of an ex-
ternal interface routine and an active constraint
graph/value store. The CIP paradigm combines the
two by replacing the imperative paradigm’s passive

1Without loss of generality, and to simplify the subsequent
discussion, we assume that the data store is divided into an
instruction store and a value store.

value store with the constraint paradigm’s active con-
straint graph, and the constraint paradigm’s interface
routine with the imperative paradigm’s active instruc-
tion processor.

The constraint paradigm can be extended to allow
both required and non-required, or preferential, con-
straints. The required constraints must hold for all
solutions, while the preferential constraints should be
satisfied if possible, but no error condition arises if
they are not. A constraint hierarchy can contain an
arbitrary number of levels of preference, in either a
total order or a partial order, as long as the stronger
constraints completely dominate the weaker ones. The
solutions to a constraint hierarchy are the valuations
(mappings from variables to values) that best satisfy
the constraints in the hierarchy, respecting their rela-
tive strengths. An important use of constraint hier-
archies in constraint imperative programming is to
express weak equality constraints between successive
states of a variable, so that its value doesn’t change
gratuitously. (This issue is discussed in more detail
in the next section.) However, constraint hierarchies
have many other uses as well, for example, to express
default initial values, or preferences in window layout
or in a scheduling application. For example, the fol-
lowing constraint states that the default background
color of the display is gray:

always: weak Display.color = Gray;

Stronger constraints (such as the constraint on the
color of the thumb in the scrollbar example) would
locally override this weak constraint.

References [2, 11] present a formal description of the
theory of constraint hierarchies, while [9, 10] describe
two algorithms, DeltaBlue and DeltaStar respectively,
for finding solutions to them.

3.2 Storage Model Integration
Integrating the time aspect of the imperative stor-

age model and the constraint graph aspect of the con-
straint storage model results in a value store defined
as a sequence of constraint graphs, one for each time
interval. We can consider this store as a function
Time × Location → SetOfValues. For notational con-
venience, we refer to a Time×Location pair as a pellu-
cid variable2 and write it as xt. Thus the store maps
xt 7→ SetOfValues. If all the constraints in the store
have the restricted form xt = c for some constant c,
then the store behaves like an imperative store; if time

2Pellucid: transparent, translucent. Pellucid values are use-
ful for discussing the semantics of CIP, but cannot be directly
accessed by a CIP program. Thus they are “transparent or
translucent.”

Statement Constraint Template

always: c * 1.8 = f - 32.0; ∀t, ct ∗ 1.8 = ft − 32.0
once: c = -40.0; t = 9, ct = −40.0
while (mouse.button = down) assert

c = mouse.location.x; t ∈ 9 . . . 15, ct = mouse.location.xt

Figure 1: Constraint Template Examples

is ignored, the store behaves like a constraint graph.
We have also found it useful to visualize the variables
in a constraint imperative program as streams of pel-
lucid variables, i.e., x 7→ 〈x1, x2, x3, . . .〉. (This way
of visualizing variables as holding streams of values is
taken from Lucid [27].)

In a constraint program, adding a constraint to the
constraint graph asserts the constraint for the dura-
tion of the program (because there is only one such
graph). However, in a CIP program, there is a sepa-
rate graph for each time interval (at least conceptu-
ally). Thus, to assert a constraint for the duration of
the program, the same constraint must be added to
each constraint graph. This can be accomplished by
keeping a table of constraint abstractions along with
the time intervals during which the abstractions are
to be asserted. The abstractions (called constraint
templates) are then used to create constraints at the
appropriate times. For example, at times 2 and 3 the
template ∀t, xt + yt = zt would create x2 + y2 = z2
and x3 + y3 = z3. In a Kaleidoscope’90 program,
the keyword always creates a permanent constraint
template, the keyword once creates a constraint tem-
plate that is asserted for a single time interval, and
the while. . . assert syntax creates a constraint tem-
plate that is asserted for a dynamically determined
duration. Figure 1 contains three example constraint
templates.

In the imperative paradigm, the value of a vari-
able (a location in the value store) does not change
unless that variable is explicitly assigned to.3 In
the CIP paradigm this property is established by
very weak “stay” constraints for each variable, i.e.,
∀x,∀t, very weak xt = xt−1. These stay constraints
serve the role of the Frame Axioms used in AI prob-
lem solving systems. They are preferences rather than
requirements: if an assignment or a stronger con-
straint has a different value for the variable, the stay
constraint should be ignored.

3Except in the presence of aliasing or pointers—which is why
these features make it harder to describe the semantics of real
imperative languages.

Finally, to integrate destructive assignment with
declarative constraints, we redefine assignment to be a
synchronic equality constraint—a constraint between
the values of variables in two different time inter-
vals. The expression on the left side refers to the
next time, and the expression on the right side refers
to the current time. For example, x:=x+y becomes
xt+1 = xt + yt. As a result, all of the computa-
tion in the data store involves constraints and no spe-
cial cases are needed to accommodate assignment or
other side effects. Since assignments are merely con-
straints, they may have complex expressions on both
sides. (For example, b*c-5 := d+sin(e) becomes
bt+1 ∗ ct+1 − 5 = dt + sin(et).)

Because all computation in a CIP program is done
with constraints, the imperative actions of writing to
the value store and computing a value are replaced
by adding one or more constraints to the value store.
The other operation on the value store is a read. In a
CIP language, a read is necessary only when a value
is being output to the external world or is needed to
select which branch of a conditional to take. There
may be many values for a variable that satisfy the
constraints equally well. Since we wish to support an
imperative programming style, we select one of the
permissible values, rather than returning a set of all
the permissible values of the variable, or backtracking
through the possibilities, as in a logic program. (This
choice is also more compatible with writing interactive
graphical applications—a primary application area for
CIP languages—as it would be difficult to display an
icon on the screen at multiple locations all at the same
time.) The selected value is then frozen so that sub-
sequent reads of the same pellucid variable will return
the same value. (Freezing the value is equivalent to
adding a required constraint that the pellucid variable
be equal to a constant, i.e., xt = c.)

To prevent various paradoxes in which the future
modifies the past, synchronic constraints are anno-
tated with read-only annotations so that values can
flow only forward in time. (See [3] for a formal def-
inition of read-only annotations in constraint hierar-

chies.) Thus x:=x+1 actually becomes xt+1 = xt? + 1,
where xt? denotes a read-only use of the pellucid vari-
able xt.

3.3 Objects
Modern programming languages support user-

defined data types (often including abstract data
types), and operations over those data types. Sup-
porting user-defined data types in a general way
presents a problem for constraint languages: user-
defined data types do not always contain enough se-
mantic information for the built-in constraint solvers
to reason about constraints on them at their level of
abstraction. Three approaches to this problem are:

1. Limit the kinds of constraints that can be applied
to user defined data types, or the power of the
solver for these constraints.

2. Allow the programmer to define new solvers for
user-defined data types, either within the pro-
gram itself or dynamically linked to the compiled
program.

3. Provide a mechanism to define constraints over
user-defined data types in terms of simpler con-
straints, ultimately reducing them to constraints
over primitive data types. This approach, which
we call splitting, is similar to how existing imper-
ative languages deal with user defined data types:
an imperative program ultimately defines opera-
tions over its user-defined data types in terms of
operations over the primitive data types.

For example, consider a set of user-defined data types
on geometric objects. We would like to define suit-
able constraints on these objects, e.g., point-on-line,
parallel-lines, and so forth. However, a built-in con-
straint solver typically would not have enough in-
formation to reason about the geometric constraints
at the geometric level. We could limit the kinds of
user-definable constraints (e.g., to equality constraints
only) or the power of the solver (e.g., to local prop-
agation only). We could define a new solver, e.g.,
Kramer’s solver for geometric constraint satisfaction
[18], and link it to the existing solvers in some fashion.
Finally, we could define the geometric constraints in
terms of primitive constraints and data types, in this
case algebraically using the real numbers.

In our current design the third approach (splitting)
is used.4 A constraint constructor is a procedure that

4In future CIP languages, we would retain splitting as the
normal way of handling user-defined constraints. However, as
Kramer’s work demonstrates, solving the constraints at the
appropriate level of abstraction adds considerable power; this

defines how a particular constraint over a user-defined
data type is to be split into constraints over its com-
ponent parts. Those component constraints may be
further split, and so on, until all the resulting con-
straints are over primitive types, and can be solved
directly by the built-in constraint solvers.

Object-oriented languages add inheritance and
dynamic binding of operation names to operations to
the basic notion of abstract data types. To handle
the dynamic binding of names to operations, when
executed, a constraint statement in a CIP program
creates a constraint template. The constraint tem-
plate is bound to, and calls, one constraint construc-
tor for each time interval. The constructor to which
it is bound depends on the concrete type of the values
in the pellucid variables it constrains. This dynamic
binding supports object-oriented programming, and
allows the concrete types of the constrained variables
to change during the execution of the program. (If
static binding were used, for example if the constraint
template were bound to a constructor at creation time,
then the concrete types of the variables would be
fixed.)

Program Runtime Program

statement
installs→ template

calls→ constructor

The constraint constructor either splits the con-
straint into further constraint templates or, at the low-
est level, generates a primitive constraint. Constraint
constructors are procedures and thus may contain any
legal statement or code fragment including iteration,
recursion, and assignment. Each constructor executes
in a nested local time scope, so that time advances
affect only local variables, but not non-local ones.

In classical object-oriented languages, such as
Smalltalk-80, the operation chosen for a given name
is determined by the concrete type of the first argu-
ment only. (In Smalltalk-80 terminology, the method
invoked by a given message is determined only by the
class of the receiver.) However, this scheme is in-
adequate for an object-oriented CIP language, since
we want to support multi-directional constraints. For
example, consider a three-argument plus constraint
p+q=r. If p were known, then the appropriate plus
constructor could be selected based on the concrete
type of p. However, if q and r were known, and p were
unknown, then this would fail. Hence we use multi-
methods, in which the operation invoked is determined
by the concrete types of all of the arguments rather

argues for allowing special-purpose solvers to be employed as
well.

Recursion Iteration

constructor =(t:Tree, v:Tree)

always: t.value = v.value;

always: t.left = v.left;

always: t.right = v.right;

end =;

constructor =(t:nil, v:nil)

end =;

constructor sum(a:Array, s:Number)

var i, partial : Number;

partial := 0;

for i := a.first to a.last do

partial := partial + a[i];

end for;

always: s = partial;

end sum;

Figure 2: Constraint Constructor Examples

than just the first. (Multi-methods were first used in
the CLOS extension to Common Lisp [1].)

Figure 2 contains two example constraint construc-
tors, one that recursively defines equality for trees, and
another that iteratively defines the “sum” constraint
for arrays.

4 A Prototype Implementation
In [11] we describe the design and implementation

of a prototype constraint imperative language, Kalei-
doscope’90. Kaleidoscope’90 is an integration of a
typed dialect of Smalltalk-80 [17] and an enhanced ver-
sion of the constraint system from ThingLab II [22].
This initial implementation interprets the constraint
imperative programming semantics directly, resulting
in a robust but very slow implementation.

The interpreter is divided into three sections: a
pre-compiler, an imperative engine, and a constraint-
based value store. The pre-compiler converts the
Kaleidoscope’90 source program into a K-code object
program. There are six basic K-codes: add a con-
straint template to the active set, remove a constraint
template from the active set, read a value from the
value store, call a procedure, branch conditionally or
unconditionally, and advance time. When the advance
time K-code is executed (typically at the end of each
source statement), each constraint template in the ac-
tive set is transmitted to the constraint-based value
store. Thus, a once constraint statement corresponds
to a template that is added to, and then promptly re-
moved from, the active set, whereas an always state-
ment corresponds to a template that is added and
never removed.

The constraint-based value store contains two co-
mingled hyper-graphs: a primitive one and a com-
pound one. The primitive graph contains a fixed class
of constraints over the primitive domains (floating
point numbers and booleans). The compound graph
contains a variety of hyper-edges which, together, sup-

port constraint templates over objects. As described
earlier, the primitive constraints cannot be directly
created by the program—instead, the program cre-
ates constraint templates which, in turn, create hyper-
edges in the compound graph. These in turn are
bound to the constraint constructors that create the
primitive constraints. Thus, the process for determin-
ing a pellucid variable’s value is first to reduce the
compound graph to a primitive graph, and then to
use the built-in primitive constraint solver to solve the
primitive graph. The compound graph is reduced as
follows:

1. Type constraints are solved to determine concrete
types for the pellucid variables.

2. Constraint constructors are bound and called,
based on the concrete types.

3. Constraint constructors on whole objects are ex-
ecuted before those on their component parts to
ensure that all primitive constraints on an ob-
ject are considered, including those created by
constraint constructors executed on any enclos-
ing objects.

The primitive constraint solver uses local propagation
when possible. When local propagation fails, if the
remaining constraints are linear equalities or inequal-
ities over the real numbers, the solver can resort to a
variant of the Simplex method adapted for constraint
hierarchies.

Although the goal of this initial implementation
was a proof of concept rather than an efficient imple-
mentation, we did add a few optimizations to improve
its performance. One technique is to replace equal-
ity constraints by identity constraints when possible.
(We can’t always perform this replacement, since in an
object-oriented language the programmer is allowed
to redefine equality between objects.) When this sub-
stitution is used, it reduces the number of objects,
pellucid variables, constraint templates, and primitive

constraints that are created, and thus diminishes the
overhead of reducing the compound graph and solving
the primitive constraints.

Another technique we used is to combine multiple
smaller constraint templates into a single larger, amal-
gamated template. Our motivation is that solving a
large number of constraints (even simple ones) is ex-
pensive. Thus, the strict object-oriented scheme of de-
composing a single constraint expression into a multi-
tude of smaller constraint expressions, each containing
a single operator, substantially increases the number
of edges in the compound graph. This is obviously
undesirable. Note that this amalgamation technique
is similar to using a graph preprocessor to manipulate
and improve the compound graph before the actual
constraint solver is invoked.

These two simple techniques—replacing equality by
identity, and amalgamating constraints—more than
doubled the speed of our prototype implementation,
and have supported our belief that better performance
from our second generation implementation will be
possible.

5 Related Work
We can roughly divide the related work on con-

straints into research on using constraints in appli-
cations, and on embedding constraints in program-
ming languages. Applications have included inter-
active graphics, layout systems, user interface con-
struction systems, various artificial intelligence sys-
tems, and design, analysis, and simulation systems.
See [9, 11, 21] for citations and a comparative discus-
sion of these applications. (Due to space limitations
we don’t describe them here.)

In the programming language arena, one of the ear-
liest efforts was that of Steele [25], whose disserta-
tion describes work on a general-purpose constraint
language using local propagation to find solutions.
Subsequently, Leler [21] designed and implemented a
constraint language based on augmented term rewrit-
ing. Lamport and Schneider [20] propose adding con-
straints to an imperative language, as a uniform ap-
proach encompassing both aliasing and typing. Their
primary motivation is the development of proof sys-
tems. Perhaps the closest work to that described here
is Horn’s Siri language [14, 15], which is also a hy-
brid object-oriented constraint imperative language.
There are a number of differences between Siri and
CIP. First, Siri uses only required constraints, rather
than a constraint hierarchy. Therefore, the user must
explicitly indicate when values are to remain the same
as time advances. Second, Siri uses term rewriting (as
in Leler’s work) as its constraint satisfaction mecha-

nism rather than DeltaBlue and DeltaStar. Third, Siri
uses a single abstraction mechanism, a constraint pat-
tern, for object description, modification, and evalu-
ation, rather than more standard approach taken here
of using separate mechanisms for these tasks. (This
uniform use of patterns is analogous to their use in
the BETA language [19].)

Most of the current activity in constraint languages
is based on logic programming. Jaffar and Lassez
have defined a general scheme, Constraint Logic Pro-
gramming (CLP), for integrating constraints with
logic programming [4, 16]. A number of instances
of this scheme have now been implemented, includ-
ing CLP(R) [12], Prolog III [5], and CHIP [6, 26].
Two generalizations of the CLP scheme are CLP* [13],
which generalizes CLP by allowing predicates to be
defined dynamically as first class objects, and HCLP
[2, 28], which generalizes CLP by including constraint
hierarchies rather than just required constraints. Fi-
nally, in the cc languages [23, 24] the conventional
store of a Von Neumann computer is replaced by one
that holds constraints. Concurrently executing agents
communicate by asking and telling constraints to this
store.

6 Future Work

We are currently redesigning and simplifying our
language to produce Kaleidoscope’91. In addition, we
are designing a more efficient implementation, which
will employ a mixed interpretation/compilation strat-
egy. Because constraints can be added and removed
dynamically in a CIP program, in general it isn’t possi-
ble to remove all runtime invocations of the constraint
solver, but it is frequently possible to eliminate many
of them. An obvious example of this optimization is
assignment to an otherwise unconstrained variable: a
simple load-store instruction pair is a better choice
than constructing a full compound graph, reducing
it, and then solving the resulting equality constraint.
Chapter 7 of [11] discusses other compilation oppor-
tunities.

Our goal is to provide an implementation of the
general model (i.e., CIP) in such a way that any given
program pays the cost of only the features that it uses.
Once this new implementation is operational, we plan
to further test the expressive power of constraint im-
perative programming by using it to write selected
non-trivial programs. The experience we gain from
this endeavor will then feed back to additional im-
provements in the design and implementation of Kalei-
doscope. Finally, we plan to investigate environmental
support for CIP languages.

Acknowledgements
Thanks to Kirsten Freeman-Benson, Bruce Horn,

Leslie Lamport, Michael Sannella, Joe Sherman,
Kevin Sullivan, Bill Wadge, and Molly Wilson for
comments on drafts of this paper. This work was
supported in part by the University of Victoria, by
the National Science Foundation under Grant No. IRI-
9102938, by a Graduate Fellowship from the National
Science Foundation for Bjorn Freeman-Benson, and by
a gift from Apple Computer.

References
[1] Daniel G. Bobrow, Linda G. DeMichiel,

Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon. Common Lisp
Object System Specification X3J13. SIGPLAN
Notices, September 1988.

[2] Alan Borning, Michael Maher, Amy Martindale,
and Molly Wilson. Constraint Hierarchies and
Logic Programming. In Proceedings of the Sixth
International Conference on Logic Programming,
pages 149–164, Lisbon, June 1989.

[3] Alan Borning, Molly Wilson, and Bjorn Freeman-
Benson. Read-Only Annotations in Constraint
Hierarchies. Technical Report 91-07-04, Depart-
ment of Computer Science and Engineering, Uni-
versity of Washington, July 1991.

[4] Jacques Cohen. Constraint Logic Programming
Languages. Communications of the ACM, pages
52–68, July 1990.

[5] Alain Colmerauer. An Introduction to Prolog III.
Communications of the ACM, pages 69–90, July
1990.

[6] M. Dincbas, P. Van Hentenryck, H. Simonis,
A. Aggoun, T. Graf, and F. Bertheir. The Con-
straint Logic Programming Language CHIP. In
Proceedings Fifth Generation Computer Systems-
88, 1988.

[7] Bjorn Freeman-Benson. Kaleidoscope: Mixing
Objects, Constraints, and Imperative Program-
ming. In Proceedings of the 1990 Conference
on Object-Oriented Programming Systems, Lan-
guages, and Applications, and European Confer-
ence on Object-Oriented Programming, pages 77–
88, Ottawa, Canada, October 1990. ACM.

[8] Bjorn Freeman-Benson and Alan Borning. In-
tegrating Constraints with an Object-Oriented
Language. In Proceedings of the 1992 European

Conference on Object-Oriented Languages, June
1992. To appear.

[9] Bjorn Freeman-Benson, John Maloney, and Alan
Borning. An Incremental Constraint Solver.
Communications of the ACM, 33(1):54–63, Jan-
uary 1990.

[10] Bjorn Freeman-Benson and Molly Wilson.
DeltaStar, How I Wonder What You Are: A
General Algorithm for Incremental Satisfaction
of Constraint Hierarchies. Technical Report 90-
05-02, Department of Computer Science and En-
gineering, University of Washington, May 1990.

[11] Bjorn N. Freeman-Benson. Constraint Imperative
Programming. PhD thesis, University of Wash-
ington, Department of Computer Science and En-
gineering, July 1991. Published as Department of
Computer Science and Engineering technical re-
port 91-07-02.

[12] Nevin Heintze, Joxan Jaffar, Spiro Michaylov,
Peter Stuckey, and Roland Yap. The CLP(R)
Programmer’s Manual Version 1.1. Technical re-
port, IBM T.J. Watson Research Center, Novem-
ber 1991.

[13] Timothy J. Hickey. CLP* and Constraint Ab-
straction. In Proceedings of the Sixteenth An-
nual Principles of Programming Languages Sym-
posium, pages 125–133, Austin, Texas, January
1989. ACM.

[14] Bruce Horn. Thesis Proposal: A Constrained-
Object Language for Reactive Program Imple-
mentation. Carnegie Mellon University, May
1990.

[15] Bruce Horn. Properties of User Interface Systems
and the Siri Programming Language. In Brad
Myers, editor, Languages for Developing User In-
terfaces. Jones and Bartlett, Boston, 1992.

[16] Joxan Jaffar and Jean-Louis Lassez. Constraint
Logic Programming. In Proceedings of the 14th
ACM Principles of Programming Languages Con-
ference, Munich, January 1987.

[17] Ralph E. Johnson. Type-Checking Smalltalk.
In Proceedings of the 1986 ACM Conference
on Object-Oriented Programming Systems, Lan-
guages and Applications, pages 315–321, Port-
land, Oregon, November 1986. ACM.

[18] Glenn Kramer, Jahir Pabon, Walid Keirouz, and
Robert Young. Geometric Constraint Satisfac-
tion Problems. In Working Notes of the AAAI
Spring Symposium on Constraint-Based Reason-
ing, pages 242–251, Stanford, March 1991.

[19] Bent Bruun Kristensen, Ole Lehrmann Madsen,
Birger Moller-Pederson, and Kirsten Nygaard.
Abstraction Mechanisms in the BETA Program-
ming Language. In Proceedings of the Tenth An-
nual Principles of Programming Languages Sym-
posium, Austin, Texas, January 1983. ACM.

[20] Leslie Lamport and Fred B. Schneider. Con-
straints: A Uniform Approach to Aliasing and
Typing. In Proceedings of the Twelfth Annual
Principles of Programming Languages Sympo-
sium, pages 205–216, New Orleans, Louisiana,
January 1985. ACM.

[21] William Leler. Constraint Programming Lan-
guages. Addison-Wesley, 1987.

[22] John Maloney, Alan Borning, and Bjorn
Freeman-Benson. Constraint Technology for
User-Interface Construction in ThingLab II.
In Proceedings of the 1989 ACM Conference
on Object-Oriented Programming Systems, Lan-
guages and Applications, New Orleans, October
1989. ACM.

[23] Vijay A. Saraswat, Martin Rinard, and Prakash
Panangaden. Semantic foundations of concur-
rent constraint programming. In Proceedings of
the 18th Annual Principles of Programming Lan-
guages Symposium. ACM, 1991.

[24] Vijay Anand Saraswat. Concurrent Constraint
Programming Languages. PhD thesis, Carnegie-
Mellon University, Computer Science Depart-
ment, January 1989.

[25] Guy L. Steele. The Definition and Implemen-
tation of a Computer Programming Language
Based on Constraints. PhD thesis, MIT, August
1980. Published as MIT-AI TR 595, August 1980.

[26] Pascal Van Hentenryck. Constraint Satisfaction
in Logic Programming. MIT Press, Cambridge,
MA, 1989.

[27] William W. Wadge and Edward A. Ashcroft. Lu-
cid, the Dataflow Programming Language. Aca-
demic Press, London, 1985.

[28] Molly Wilson and Alan Borning. Extending Hi-
erarchical Constraint Logic Programming: Non-
monotonicity and Inter-Hierarchy Comparison.
In Proceedings of the North American Conference
on Logic Programming, Cleveland, October 1989.

