
, , 1–20 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Fourier Elimination for Compiling Constraint Hierarchies

WARWICK HARVEY warwick@cs.mu.oz.au
Department of Computer Science and Software Engineering, University of Melbourne, Parkville 3052, Australia1

PETER J. STUCKEY pjs@cs.mu.oz.au
Department of Computer Science and Software Engineering, University of Melbourne, Parkville 3052, Australia

ALAN BORNING borning@cs.washington.edu
Department of Computer Science & Engineering, University of Washington, Box 352350, Seattle, Washington
98195, USA

Editor:

Abstract. Linear equality and inequality constraints arise naturally in specifying many aspects of user interfaces,
such as requiring that one window be to the left of another, requiring that a pane occupy the leftmost 1/3 of a
window, or preferring that an object be contained within a rectangle if possible. For interactive use, we need to
solve similar constraint satisfaction problems repeatedly for each screen refresh, with each successive problem
differing from the previous one only in the position of an input device and the previous state of the system. We
present an algorithm for solving such systems of constraints using projection. The solution is compiled into very
efficient, constraint-free code, which is parameterized by the new inputs. Producing straight-line, constraint-free
code of this sort is important in a number of applications: for example, to provide predictable performance in
real-time systems, to allow companies to ship products without including a runtime constraint solver, to compile
Java applets that can be downloaded and run remotely (again without having to include a runtime solver), or
for applications where runtime efficiency is particularly important. Even for less time-critical user interface
applications, the smooth performance of the resulting code is more pleasing than that of code produced using
other current techniques.

Keywords: linear arithmetic constraints, constraint compilation, heirarchical constraints, Fourier elimination
algorithm, user interfaces

1. Introduction

Constraints are a natural tool for user interface toolkits and other kinds of interactive graph-
ical systems. Some important uses in this application area include specifying layout and
other geometric information, maintaining consistency between application data and a view
of that data, and maintaining consistency among multiple views. It is important to be
able to express preferences as well as requirements in interactive constraint systems. One
important use is to express a desire for stability when moving parts of an image: things
should stay where they were unless there is some reason for them to move. A second use
is to process potentially invalid user inputs in a graceful way. For example, if the user
tries to move a figure outside of its bounding window, it is reasonable for the figure just
to bump up against the side of the window and stop, rather than signalling an error. A
third use is to balance conflicting desires, for example in laying out a graph. The con-
straints needed to specify and maintain layout information are typically linear equalities
and inequalities over the real numbers.2 Inequality constraints in particular are needed to
express relationships such as “inside,” “above,” “left-of,” and “overlaps.” For example, we

2

can express the requirement that window1 be to the left of window2 as the constraint
window1.rightSide � window2.leftSide. Some of these layout constraints
will be requirements, and others preferences.

For interactive systems, a typical requirement is to re-satisfy the constraints repeatedly as
the user moves some part of a figure—each time the screen is refreshed the constraints must
be re-satisfied. Each of these constraint satisfaction problems differs from the previous
ones only in the values of some of the constants in the constraints (for example, the mouse
position). One strategy for achieving the required interactive response times is to compile a
constraint satisfaction plan: a block of code that can be executed repeatedly to re-solve the
constraints with different input parameters. (We can view this as a kind of partial evaluation
of the constraint solving algorithm.) This has long been done for local propagation solvers
(e.g. [1]), and more recently for simultaneous linear equations [4] and for acyclic sets of
inequality constraints [2]. However, there have not been any systems that can compile plans
for systems of constraints including a cyclic set of simultaneous equalities and inequalities.
That lack is addressed here.

The original motivation for this work was constraint solving for user interface toolkits
and other kinds of graphical interactive systems. The technique is useful for two reasons:
first, it produces code that requires no runtime support for constraint solving; second, the
code is very efficient. The technique should also be useful in other applications where
either of these considerations is a factor.

The ability to get rid of runtime support is important in many real software tasks. One
example of this sort is a constraint-based authoring environment for producing Java applets,
where the behaviour of the applet is partially specified using constraints. After the applet is
written and tested in the authoring environment, the constraint compiler is used to produce
straight Java code that can be shipped over the net and run on a remote machine, without
requiring a runtime constraint solver on the remote machine. Some preliminary work on
such an application has been done [6], and we have used the constraint compiler to produce
Java code for several applets. These include an interactive demonstration of a geometric
theorem, and an abacus simulation, which were then included in web documents. As
a second example, when building an embedded real-time engine controller, predictable
performance is needed: compiled code can provide that, but calls to runtime constraint
solvers generally cannot. Finally, in developing a product, a company might use constraints
in developing the application and not want to ship a proprietary constraint solving package
with that application [8].

The compiled code is also very efficient—our measurements show speeds from 5 to 20
times faster than the same test cases performed using a runtime solver based on the simplex
algorithm [7]. The runtime solver is reasonably efficient as well, and in many applications
the constraint solving time is dominated by the graphics refresh time for either technique.
However, in some cases the simplex solver has markedly varying response times—much
of the time it is extremely fast, but when a succession of pivots are required it slows down
considerably, giving rise overall to a more jerky quality to the interaction. (People prefer
uniform response times to varying ones.) The additional speed could be important in other
cases as well, for example when the compiled code is to be run on a slower processor.

In this paper we show how we can use Fourier elimination to compile heirarchical con-
straint solving.3 In Section 2, we introduce the notion of solving constraints by projection,

3

and show how it can be used to produce compiled code. We review the notion of con-
straint hierarchies for expressing preferential constraints in Section 3, before showing how
to adapt the projection algorithm to handle hierarchical constraints in Section 4. In Section
5, we address the issue of redundancy management. In Section 6, we discuss some exten-
sions to the algorithm. We examine some of the compile-time and run-time properties of
our prototype implementation in Section 7, while in Section 8 we present some theoretical
complexity results for the algorithm. Finally, in Section 9 we conclude.

2. Solving constraints using projection

In this section we briefly illustrate how projection can be used to find solutions to linear
equality and inequality constraints. For the moment we will ignore preferential constraints,
and also ignore issues of compilation.

A primitive constraint in this context is a linear inequality or equality. A constraint is a
set of primitive constraints. We assume every primitive constraint is written in a simplified
form so that no variable appears twice in the same primitive constraint. Let vars(C)
denote the set of variables appearing in constraint C, and similarly let vars(c) denote the
set of variables appearing in equation or inequality c. We denote by �9WF the existential
quantification of all variables in F except W , that is the formula 9v19v2 � � � 9vk F , where
W is a set of variables and fv1; : : : ; vkg = vars(F) �W .

For each variable x 2 vars(C) we can partition C in the following way. Let C 0
x be

the set of primitive constraints c 2 C where x 62 vars(c). Let C=
x be the set of equations

c 2 C where x 2 vars(c). Let C+
x be the set of inequalities c 2 C such that c is equivalent

to an inequality of the form x � e, where e is a linear expression not involving x. Finally,
let C�

x be the set of inequalities c 2 C such that c is equivalent to an inequality of the form
e � x, again where e is a linear expression not involving x.

The projection algorithm in Figure 1 eliminates a variable x from constraint C and re-
turns constraint D $ 9xC using either Gaussian elimination or Fourier elimination.

To solve constraints we project out each variable in turn using project until no variables
remain. The resulting constraintC 0 is equivalent to �9;C. None of the primitive constraints
in C 0 involve any variables and hence we can straightforwardly determine whether C 0 is
satisfiable or not. This answers the satisfiability question for C. We can then use the
intermediate constraints Ci produced after i � 1 applications of project, as well as the
variables x1; : : : ; xn in their order of elimination, to build a solution to C. For 1 � i � n

it is the case that vars(Ci) = fxi; : : : ; xng. So Cn only contains variable xn and hence
only contains constraints of the form xn = b, xn � b and b � xn. Since C is satisfiable
we can find a valuation for xn which is a solution of Cn.

We can extend a solution � = fxi+1 7! di+1; : : : ; xn 7! dng of Ci+1 to a solution of
Ci as follows. Consider each of the constraints in Ci that involve xi. If one is an equation
equivalent to xi = e, where e is an expression only involving variables fx i+1; : : : ; xng,
then we can let di = e�. Otherwise Ci only contains inequalities containing xi. These can
be written in the form xi � ej or ek � xi, where ej or ek is an expression only involving
variables fxi+1; : : : ; xng. Using valuation � we can determine the minimum u of the e j�
and maximum l of the ek�. Any value for di between l and u gives a valid solution of Ci.
The new solution is thus fxi 7! di; xi+1 7! di+1; : : : ; xn 7! dng.

4

project(C;x)

if exists c 2 C=
x where c � x = e then

D := C � fcg with every occurrence of x replaced by e

else

D := C0
x;

for each c 2 C+
x where c � x � e+

for each c 2 C�x where c � e� � x

D := D [fe� � e+g;

end for each

end for each

end if

return D;

Figure 1. Combined Fourier-Gaussian projection

xm xrxl

500 100

Figure 2. A simple constrained picture

We now give an example of constraint solving using projection, using the illustration in
Figure 2. The constraints are as follows: xm is constrained to be the midpoint of the line
from xl to xr, xl is constrained to be at least 10 to the left of xr, and all variables must lie
in the range 0 to 100.

We can represent this using the constraint C1 shown in Figure 3. To solve this constraint
using variable elimination, we start with C1, select a variable and project it out, and con-
tinue until no variables remain. Suppose we first select x l. We can project it out using the
equation 2xm = xl + xr, yielding the constraint C2, and then project out xr, yielding the
constraint C3 (where we have eliminated some simple redundancy). Finally, eliminating
xm we obtain C4, which is clearly satisfiable.

We now show how to construct a solution from these constraints. By inspecting C 3, we
know we can pick any value between 5 and 95 for xm, say 50. Next we examine the con-
straints in C2 involving xr. These are fxm + 5 � xr;

2xm � 100 � xr ; 0 � xr ; xr � 2xm; xr � 100g. Given xm = 50, this becomes
f55 � xr; 0 � xr; 0 � xr; xr � 100; xr � 100g. We can thus pick any value for xr in

5

C1 C2 C3 C4

2xm = xl + xr xm + 5 � xr 5 � xm 5 � 95

xl + 10 � xr 2xm � 100 � xr xm � 95

xl; xm; xr � 100 xr � 2xm

0 � xl; xm; xr xm; xr � 100

0 � xm; xr

Figure 3. Constraint projection example

xlm := 5;
xum := 95;
choose xm 2 [xlm::x

u
m]

xlr := max f xm + 5, 2xm � 100, 0 g;
xur := min f 2xm, 100 g;
choose xr 2 [xlr::x

u
r]

xl := 2xm � xr;
return (xm; xr; xl);

Figure 4. Code to solve the constraints of Figure 2, obtained by Fourier elimination

the range [55::100], say 70. Finally, examining the constraints in C1, there is an equation
involving xl, namely xl = 2xm � xr, so we can use this equation directly to set xl to 30.

We now use this information to compile a sequence of statements that constructs a so-
lution to the constraints, and returns it as a triple, illustrated in Figure 4. As it stands this
sequence of statements isn’t very interesting, since it only solves one problem. However,
in Section 4 we show how to use a similar technique to compile code parameterized by
appropriate inputs.

3. Constraint hierarchies

As discussed earlier, for interactive graphics applications, it is important to be able to
express preferences as well as requirements in the constraint system; in particular a desire
for minimizing change as a figure is manipulated. We use constraint hierarchies [5] for
specifying the desired solutions to a collection of required and preferential constraints
independent of the particular algorithm involved.

A labelled primitive constraint is a primitive constraint labelled with a strength, written
sc, where s is a strength and c is a primitive constraint. Strengths are non-negative integers.
For clarity, we give symbolic names to the different strengths of primitive constraints.

6

Strength 0, with the symbolic name required, is always reserved for required constraints.
For the purposes of this paper we shall use the following symbolic names for strengths:
strong = 1, medium = 2, and weak = 3, but in general the approach works for any number
of strength levels. Note that a higher integer “strength” indicates a weaker constraint.

A constraint hierarchy is a multiset of labelled primitive constraints. Given a constraint
hierarchy H, H0 denotes the multiset of required primitive constraints in H, with their
labels removed. In the same way, we define the multisets H1; H2; : : : ; Hn for strengths
1; 2; : : : ; n.

Since we are now dealing with non-required constraints, valuations of interest may not
satisfy all constraints. Hence we need to be able to measure the degree to which a constraint
is satisfied. We assume that for each primitive constraint c we have an error function e(c�)
that returns a non-negative real number indicating how nearly the primitive constraint c is
satisfied for a valuation �. In the work described here, the domain is the reals, and the error
function returns a value that varies depending on how nearly the constraint is satisfied. For
example, the error for x+y = z is jx+y�zj, while the error for x � y is max(0; x�y).

The set S of solutions to the hierarchy is defined as follows. S0 is the set of valuations
such that all the H0 constraints hold; from this we form S by eliminating all potential val-
uations that are worse than some other potential valuation using the comparator predicate
better.

S0 = f� j 8c 2 H0 c� holdsg

S = f� j � 2 S0 ^ 8� 2 S0 :better(�; �;H)g

For now we assume the use of local comparators for better, which compare two solu-
tions primitive constraint by primitive constraint. (In Section 6, we will look at how we can
extend our approach to certain kinds of global comparators.) A valuation � is locally-better
than another valuation � if, for each of the primitive constraints through to some strength
level k � 1, the error after applying � is equal to that after applying �, and at level k the
error is strictly less for at least one primitive constraint and less than or equal for all the
rest.

locally-better(�; �;H) � 9k > 0 such that

8i 2 1 : : : k � 1 8p 2 Hi e(p�) = e(p�)

^ 9q 2 Hk e(q�) < e(q�)

^ 8r 2 Hk e(r�) � e(r�)

A locally-better comparator with such an error function is known as locally-error-better.
A traditional demonstration of constraint-based graphics is the Quadrilateral Theorem

illustrated in Figure 5. The screen snapshots are taken from our Smalltalk implementation,
which uses the code produced by the projection algorithm. Each side of the quadrilateral
is bisected, and lines are drawn between the midpoints (these inner lines always form
a parallelogram). This is expressed as a constraint on each midpoint that it lie halfway
between the endpoints of its line.

In addition, all points are constrained to be at least 10 pixels from the sides of the window,
the north vertex is constrained to be at least 30 pixels above the south vertex, and the east
vertex is constrained to be at least 30 pixels to the right of the west vertex (the latter two so

7

(a) (b) (c) (d)

Figure 5. Demonstrating a theorem about quadrilaterals

that the quadrilateral cannot collapse to a point). Taken together, these constraints are too
difficult for most UI constraint solvers, since they involve cyclic equality and inequality
constraints.

In Figure 5(a) we have picked up one of the midpoints with the mouse and begun to move
it by temporarily adding an edit constraint equating the position of the midpoint and the
mouse. This constraint is strongly preferred but not required—we will violate it if neces-
sary. The corner points are weakly constrained to stay where they are by stay constraints.
The constraint heirarchy representing the quadilateral problem is shown in Figure 6, where
(nx; ny), (ex; ey), (sx; sy) and (wx; wy) are the coordinates for the north, east, south and
west vertices, respectively. The coordinates of the midpoints are (nex; ney), (sex; sey),
(swx; swy) and (nwx; nwy). (Mousex;Mousey) are the current coordinates of the mouse,
and old(nx), old(ny), etc. give the old coordinates of the points (where we want them
to stay). The strong edit constraints ensure that the south east midpoint tries to follow
the mouse, while the weak stay constraints try to maintain the corner points in their old
positions.

In Figure 5(b) the mouse has been moved to the right, and to keep the midpoint constraint
satisfied the east vertex (ex; ey) has moved as well. We continue moving to the right. In
Figure 5(c) the east vertex has run into the imaginary wall resulting from the constraint that
it be at least 10 pixels from the window boundary, and can move no further. As a result,
in order to maintain the midpoint constraint, the south vertex (s x; sy) has begun moving
instead. Finally, in Figure 5(d) the mouse has moved beyond the permitted region for the
midpoint. The midpoint has moved as close to the mouse as possible, thus causing the two
endpoints of its line to be pressed against the boundary as well.

Formally, the stay and edit constraints from this example are simply constraints of the
form v = b for variable v and constant b. However, when we come to compile code for re-
peatedly solving a collection of constraints, it will be important to handle these constraints
efficiently, since the value of b will change for each solution: for the stay constraints, it
will be the value of v on the previous step; for the edit constraints, it will come from some
external input. The other constraints will remain unaltered for each step.

8

required 2nex = nx + ex
required 2ney = ny + ey
required 2sex = sx + ex
required 2sey = sy + ey
required 2swx = sx + wx

required 2swy = sy + wy

required 2nwx = nx + wx

required 2nwy = ny + wy

required ny � sy + 30
required ex � wx + 30
required 10 � nx; ex; sx; wx � 290
required 10 � ny; ey; sy; wy � 290

strong sex = Mousex
strong sey = Mousey
weak nx = old(nx)
weak ny = old(ny)
weak ex = old(ex)
weak ey = old(ey)
weak sx = old(sx)
weak sy = old(sy)
weak wx = old(wx)
weak wy = old(wy)

Figure 6. Constraint heirarchy representing the quadrilateral problem

4. Compiling projection for hierarchies

We can now describe the complete algorithm for compiling code that can repeatedly find a
locally-error-better solution to a constraint hierarchy given a series of input values. We as-
sume the constraint hierarchy is in hierarchical normal form. In this form, the only kind of
preferential constraints are ones of the form v = b for a variable v and constant b; all other
constraints are required (i.e. we must satisfy them in any solution). In practice the original
problem will usually already be in this form. If not, it is easy to transform an arbitrary linear
constraint hierarchy into this form by adding error variables. For example, strong(e � b),
where e is a linear expression, becomes required(e � b+ ve)^ strong(ve = 0), where ve
is a new error variable.

Recall that a hierarchical constraint H can be separated into parts H i, each of which
contain the primitive constraints of strength i. If H is in hierarchical normal form, then for
i � 1 Hi will contain only equations of the form v = b where v is a variable and b is a
constant. We can use this information to build a strength partitioning of the variables. Let
Vi be defined as follows:

V1 = vars(H1)

Vi+1 = vars(Hi+1)� (V1 [� � � [Vi)

Thus Vi contains those variables whose strongest non-required primitive constraint is of
strength i. For simplicity, we assume that every variable is involved in a non-required
constraint. This will normally be the case in constraint-based graphics applications. (If not,
we can add a very weak stay constraint—weaker than any of the existing constraints—to
any variable not otherwise involved in a non-required constraint. Any locally-error-better
solution to the new hierarchical constraint will also be a locally-error-better solution to the
original constraint.)

9

Consider solving the constraints for Figure 2 augmented with the preferential constraints
strong(xm = bm) ^ weak(xr = br) ^ weak(xl = bl). Then H1 = xm = bm and
H3 = fxr = br; xl = blg. The strength partitioning of the variables gives V1 = fxmg,
V2 = ; and V3 = fxr; xlg.

Now we can use the projection algorithm to build code for solving hierarchical normal
form constraints, where each problem differs from the others only in the values of the
constants b in the non-required primitive constraints. Each problem corresponds to a solu-
tion of the constraint heirarchy required to determine the positions of objects for a screen
refresh during the manipulation of the diagram.

We apply the projection algorithm to eliminate all variables in the set V j before eliminat-
ing any variables in Vi where i < j. A total ordering x1 � x2 � � � � � xn on the variables
x1; : : : ; xn in a hierarchical normal form constraint H respects the hierarchy if

8i < j v 2 Vi ^ w 2 Vj ! w � v:

Returning to our example of solving the constraints on Figure 2 augmented with strong(xm =
bm) ^ weak(xr = br) ^ weak(xl = bl), an ordering that respects the heirarchy is
xm � xr � xl.

The full algorithm for generating code takes an ordering of variables
x1 � x2 � � � � � xn, and the required constraint C. To solve the constraint C in
conjunction with H1, H2, . . . , Hk, for each variable xi 2 Vl we select a constraint
xi = bi from Hl; that is, we arbitrarily choose one of the highest strength non-required
constraints on xi to determine the value bi. Making such a choice is correct because
of the locally-error-better comparator: minimising the error of one of the strongest
non-required constraints will always give a locally-error-better solution. (By choosing
a different constraint of the same strength, we would compute a different but still valid
locally-error-better solution.)

The code produced by the algorithm in Figure 7 will either set x i to bi if this is a legit-
imate choice given the solution determined so far, or set x i to its lower or upper bound,
whichever is closest to the value bi.

THEOREM 1 (CORRECTNESS OF CODE GENERATE) Let C be a constraint with vari-
ables fx1; : : : ; xng. Given a variable ordering x1 � x2 � � � � � xn for variables in con-
straintC, the solution (d1; : : : ; dn) returned by the code produced by code generate(fx1; : : : ; xng; C; V)
will be a locally-error-better solution for the constraint

C ^ s1(x1 = b1) ^ � � � ^ sn(xn = bn)

where for 2 � i � n, strength si�1 � si > 0 (i.e. strength si�1 is the same as or weaker
than strength si).

Proof: The value for each variable is chosen from the available range of values for
that variable as determined by Fourier-Gaussian elimination. Thus, by the correctness
of Fourier-Gaussian elimination, the algorithm always produces solutions that satisfy the
required constraints in C. It remains to show that the solution produced is also locally-
error-better.

Assume to the contrary that (d1; : : : ; dn) is not a locally-error-better solution to the
constraints. Then there exists another solution (d 01; : : : ; d

0
n) that is locally-error-better

10

code generate(hx1; : : : ; xni ; C)
C1 := C;
for i := 1 to n

Ci+1 := project(Ci; xi);
end for
for i := n to 1

if exists c 2 Ci where c � xi = e then
emit(xi := e);

else
minset := ;; maxset := ;;
for each primitive constraint c 2 Ci where xi 2 vars(c)

if c � e � xi then
minset := minset [feg;

else if c � xi � e then
maxset := maxset [feg;

end if
end for each
emit(xli := max f minset g);
emit(xui := min f maxset g);
emit(if bi 2 [xli::x

u
i] then);

emit(xi := bi);
emit(else if bi � xli then);
emit(xi := xli);
emit(else xi := xui);
emit(end if);

end if
end for
emit(return (x1; : : : ; xn));

Figure 7. Code generation algorithm

than (d1; : : : ; dn). Let j be the largest index where d0j 6= dj . We examine the selec-
tion of the value of the variable xj . By the correctness of Fourier-Gaussian elimination,
�9fxj ;:::;xngC $ Cj and hence

(�9fxj ;:::xngC) ^ xj+1 = dj+1 ^ � � � ^ xn = dn $ Cj ^ xj+1 = dj+1 ^ � � � ^ xn = dn

Given that the variablesxj+1; : : : ; xn take the values dj+1; : : : ; dn respectively, then clearly
the only solutions of xj in Cj are in the range [xlj ::x

u
j].

If bj 2 [xlj ::x
u
j] then dj = bj and d0j 6= bj . Hence the error for the equation xj = bj is

greater for the solution (d01; : : : ; d
0
n) than for (d1; : : : ; dn). But this means (d01; : : : ; d

0
n) is

not locally-error-better than (d1; : : : ; dn) since it has a greater error in the equation xj = bj
and (d1; : : : ; dn) has the same error for every non-required equation of higher strength.

11

xlm := 5;
xum := 95;
if bm 2 [xlm::x

u
m]

xm := bm;
else if bm < xlm

xm := xlm;
else xm := xum;
xlr := max f xm + 5, 2xm � 100, 0 g;
xur := min f 2xm, 100 g;
if br 2 [xlr::x

u
r]

xr := br;
else if br < xlr

xr := xlr;
else xr := xur;
xl := 2xm � xr;
return (xm; xr; xl);

Figure 8. Code for the midpoint example constraints

Otherwise, if bj < xlj then dj = xlj and so d0j > dj (since d0j must be in the range
[xlj ::x

u
j]). Again the error for the constraint xj = bj is greater for (d01; : : : ; d

0
n) than for

(d1; : : : ; dn), which implies that (d01; : : : ; d
0
n) is not locally-error-better than (d1; : : : ; dn).

The remaining case of bj > xuj is similar.

Continuing with our running example of compiling the constraints for Figure 2 aug-
mented with strong(xm = bm) ^ weak(xr = br) ^ weak(xl = bl), the resulting code is
shown in Figure 8. Note the very high similarity of this code with that of Figure 4.

Suppose the midpoint of the line is selected by the mouse to move to position 60, and the
remaining points are constrained to stay where they are (x l = 30 and xr = 70). This then
imposes constraints strong(xm = 60)^weak(xr = 70)^weak(xl = 30), for which the
code in Figure 8 generates the answer (60; 70; 50). If the mouse now moves to position 70,
the edit and stay constraints translate as strong(xm = 70)^weak(xr = 70)^weak(xl =
60) and the code generates the answer (70; 75; 65). If the mouse now moves to position 0,
the code generates the answer (5; 10; 0).

5. Redundancy management

One of the problems with Fourier elimination is that a large number of constraints can
be produced (potentially an exponential number), many of which are redundant. For a
constraint compiler based on Fourier elimination to succeed, it is crucial that the issue of
redundant constraints be addressed. Detecting and eliminating all redundancy is not very

12

practical, but there are a number of types of redundancy that are cheap to detect, while still
being effective at keeping the number of redundant constraints down.

One of these is quasi-syntactic redundancy. A primitive constraint

c1 � a1x1 + : : :+ amxm � a0

is quasi-syntactically redundant with respect to

c2 � a1x1 + : : :+ amxm � b0

or c2 � a1x1 + : : :+ amxm = b0

if b0 � a0; if this is the case c1 can be dropped without affecting the result. This test is
inexpensive, O(n logn) for testing n primitive constraints, yet allows us to get rid of a
significant number of redundant constraints.

The other main class of redundancy which we detect and eliminate targets the output
constraints. During the projection process, the best known (constant) bounds are main-
tained for each variable. Then when a variable (say x) is to be eliminated, the constraints
that are to yield upper and lower bounds for x are examined. Any constraint that can be
shown to be redundant with respect to another, by using the bounds information accumu-
lated earlier, is discarded. Doing this redundancy elimination at this point can drastically
reduce the size of the cross-product formed during the elimination of x, and also directly
reduces the number of compiled constraints.

The bounds information is used by evaluating the minimum and maximum values an
expression can take, subject to the known bounds. Best use is made of this by examining
the expressions for, say, the upper bounds on x in a pairwise fashion, and evaluating the
difference between the expressions. If the minimum possible value of the difference is
non-negative, the first expression is guaranteed to be no smaller than the second; if the
maximum value is non-positive, it is guaranteed to be no larger. In both of these cases, one
of the constraints may be discarded as redundant; otherwise, no redundancy information
can be deduced. By evaluating the difference of the constraints in this fashion, rather than
each constraint individually, one is able to obtain much more redundancy information.
For example, suppose we have bounds on x of x � 2y, x � y + 10, and we know
that �5 � y � 5. For the first bound, we can deduce that it lies between �10 and 10;
for the second it is between 5 and 15. Since 5 < 10, we cannot guarantee that the first
constraint will always be tighter than the second. However, if we look at the difference
(y � 10), we can work out that it lies between �15 and �5, and thus can guarantee that
the first constraint will always be tighter than the second, and so can discard the latter as
redundant.

The second main approach to managing redundancy is to try to minimise the number of
redundant constraints generated in the first place. This can be done by being clever about
the order in which variables are eliminated. The algorithm as it stands leaves us reasonable
freedom in the choice of which variable to eliminate (we can choose variables at the same
strength in any order we like). Some simple heuristics about which variable to eliminate
next can make a substantial difference to the number of constraints generated. An obvi-
ous and useful heuristic is to choose a variable appearing in an equation, so that Gaussian
elimination can be used rather than Fourier. If there are no such variables, choosing x

that minimises jC+
x j � jC�

x j can work well (this minimises for the next step the sum of

13

the number of output constraints and the number of constraints remaining, prior to redun-
dancy elimination). The actual heuristic we use counts the number of linear terms in the
constraints, rather than the number of constraints, since this discourages the formation of
constraints with many terms, which are particularly problematic for Fourier elimination.

We have based a more reasoned approach to selecting which variable to eliminate next
on the results of Theorem 4 (see Section 8). This often allows us to process relatively small
groups of variables and constraints at any given time, which limits the scope for producing
redundant constraints. In practice, this approach seems to work well.

6. Refinements

In this section we discuss some refinements to the solver that would appear to increase the
class of problems it can solve, but can be implemented simply by altering the input to the
main algorithm.

6.1. Optimising a function

Rather than just returning any solution satisfying the input constraints, it is possible to
optimise a linear objective function. This can be done by introducing a new variable rep-
resenting the value of the objective function, plus a required constraint relating it to the
variables it depends on. Then a constraint of an appropriate strength can try to set the value
of the objective function to some suitably large (maximise) or small (minimise) value. 4

Note that one can actually have as many objective functions at as many different strengths
as one wants. For instance, one could optimise a particular function subject to only the re-
quired constraints, then optimise another subject to the first remaining optimal, then add
some non-required constraints on the values of some variables, and then apply a final op-
timisation: all by assigning appropriate strengths to each. Note that normally an objective
function would not share its strength with anything else. For example, if two objective
functions were assigned the same strength, the solver would be free in its choice of which
to optimise first. Allowing such a choice would not usually make sense unless the objective
functions were independent of each other.

6.2. Global comparators

In Sections 3 and 4, we assumed that we were working with local comparators. However,
it is possible to achieve an effect equivalent to using any linear global comparator. The way
this is done is similar to the introduction of an objective function above, except that this
time the function is in terms of error variables. This may require the introduction of extra
error variables which were not needed before, as well as some required non-negativity
constraints on the error variables.

Consider the simple midpoint example again, where we have added weak stay constraints
on xl, xm and xr, plus a strong constraint on xl. These constraints are shown in Figure 9.
Suppose we wish to minimise the sums of the errors in the weak constraints, with medium
strength. The error in the weak constraint xr = R is jxr � Rj. We cannot encode this

14

required 2xm = xl + xr
required xl + 10 � xr
required xl � 0
required xm � 0
required xr � 0
required xl � 100
required xm � 100
required xr � 100

strong xl = X

weak xl = L

weak xm =M

weak xr = R

Figure 9. Midpoint example—local comparator version

required 2xm = xl + xr
required xl + 10 � xr
required xl � 0
required xm � 0
required xr � 0
required xl � 100
required xm � 100
required xr � 100

strong xl = X

required xl + e�
l
= L+ e+

l

required xm + e�m =M + e+m
required xr + e�r = R+ e+r

required e+
l
� 0

required e�
l
� 0

required e+m � 0
required e�m � 0
required e+r � 0
required e�r � 0
required e+

l
+ e�

l
+ e+m + e�m + e+r + e�r = g

medium g = 0
weak xl = L

weak xm =M

weak xr = R

Figure 10. Midpoint example—global comparator version

error directly using a linear constraint due to the modulus. Instead, we introduce a pair
of new variables to represent the error: one for when the difference is negative, and one
for when it is positive. If each of these variables is then constrained to be non-negative,
their sum can be used to represent the error.5 Thus we have xr + e�r = R + e+r , with
e+r � 0 and e�r � 0. Taking into consideration all the weak constraints, the global error is
then e+l + e�l + e+m + e�m + e+r + e�r = g. To minimise this, we also add, with medium
strength, g = 0. The final result is shown in Figure 10. Note that we have kept the weak
stay constraints, to ensure that the variables are set to particular values.

As can be seen, and not too surprisingly, using global comparators comes at a cost, in
terms of the size and number of the constraints to be compiled.

15

7. Computational results

The projection-based compilation algorithm has been implemented and tested. Our pro-
totype implementation is in Mercury [14], and includes a module that is easily adapted
to generate code for different target languages. The current implementation produces
Smalltalk code, which is stored in a file. Then, in the Smalltalk environment, the code
is loaded and incorporated into a graphics application for execution. The advantages of
using Smalltalk are that Smalltalk includes an extensive graphics library, making it easy
to test interactive graphical programs, and also that we have a Smalltalk implementation
of Cassowary, a simplex-based solver, which allows a head-to-head comparison of the run
times of the two algorithms.

We have investigated the performance of our algorithm for several medium-sized exam-
ples of constraints for interactive graphics.

The boxcars benchmark has a number of boxes in a horizontal row. Each box is con-
strained to be to the right of the previous one, and all are constrained to stay within a
specified horizontal range.

The binary tree benchmark is a complete binary tree of a given height. Each pair of
children are constrained to be at the same height, both must be at least some minimum
distance below their parent, and they must be separated from each other by some minimum
distance. All parent nodes must be centred over their children, and finally every node must
lie within a certain bounding box. This formulation has some redundancy—we could have
specified only that the left child be the minimum distance below the parent, rather than
both the left and right children, since the children are at the same height. However, this
redundancy arises naturally in the specification.

The grid benchmark is an n � n grid of points where every point is constrained to be
on an imaginary vertical line through the points above and below it, and on a horizontal
line through the points to the left and right. No point can be within a given distance of
its neighbours, and all points lie within a given box. Again this specification leads to
redundancy in the constraints.

The compilation results are shown in Table 1. For each benchmark we give the following
information:

� the number of variables in the original formulation;

� the number of primitive constraints in the original formulation;

� the typical number of primitive constraints in the compiled code (that is, the number of
inequalities used for minset and maxset calculations, plus the equations used to emit
calculation code, for a typical choice of edit variable(s)); and

� the typical CPU time required for the Mercury program to produce the Smalltalk code

The compilations were done on a DEC AlphaServer 8400 with eight 300 MHz 21164
processors.

The compiled versions did not suffer from an exponential blow-up in the number of
primitive constraints, and indeed all contain fewer constraints than were in the input, the
reduction being due to the redundancy elimination performed during projection.

16

Table 1. Compilation statistics

Problem size variables primitive compiled time
constraints constraints (secs)

boxcars 50 50 149 100 0.7
100 100 299 200 1.4
200 200 599 400 4.5
400 400 1199 800 15.8
800 800 2399 1600 62.0

binary tree 5 62 199 111 0.5
6 126 407 230 1.2
7 254 823 470 3.7
8 510 1655 950 12.5
9 1022 3319 1910 46.2

grid 5� 5 50 180 60 0.4
10 � 10 200 760 220 3.3
20 � 20 800 3120 840 48.1

Table 2. Runtime statistics

Problem Time (milliseconds) Avg. # of pivots
Fourier Cassowary Graphics (Cassowary only)

50 boxcars 1.0 5.0 38.0 0.11
(infrequent collisions)
50 boxcars 1.0 16.0 38.0 0.51
(frequent collisions)
depth 5 tree 5.3 68.6 46.0 1.55
(frequent collisions)
depth 5 tree 5.3 124.5 46.0 3.77
(v. frequent collisions)

The code produced is extremely efficient, and also has predictable performance irrespec-
tive of the input values. Table 2 gives some measurements of the execution speed of the
compiled code as compared with the execution speed of the Cassowary constraint solver
[7], which uses an efficient simplex-based algorithm specifically adapted for repeatedly
solving constraints arising in interactive graphics applications. All timings were done us-
ing OTI Smalltalk Version 4.0, running on an IBM Thinkpad 760EL laptop computer.

The times shown are the average number of milliseconds to perform one update, i.e. to
solve the constraint problem with a new value for the mouse position. The Fourier and
Cassowary times are both without graphics refresh; the additional refresh time is shown in
the “Graphics” column. Finally, for Cassowary, the last column gives the average number
of simplex pivots per update. There are two different runs given for the boxcars example,
one with the input varying slowly, so that collisions between the boxcars are relatively
infrequent, and another with more rapidly varying input, causing more collisions. The time
to run the Fourier code is the same for both cases; however, with frequent collisions the
Cassowary time per update increases substantially. The reason is that a collision generally
requires a pivot in the simplex tableau, which is expensive; when there is no collision, the
tableau can be updated very efficiently with no pivoting required. There are also two runs
for the tree example. We used a tree with the node displays closely spaced, so that there
were many collisions (a moving node bumping into a stationary one) in both cases; the
second run involved moving the mouse more quickly to generate even more collisions.

17

For these examples the Fourier code is approximately 5 to 20 times faster than the run-
time simplex solver. For the relatively simple constraints of the boxcars example, the
graphics refresh time is substantially more than the time required to satisfy the constraints
in any of the tests. However, when using the simplex solver for the tree example, the con-
straint solving time becomes significant compared to the graphics refresh time. In addition,
the simplex solver has variable solving time, which is quite apparent when the mouse is
moved very quickly on this example—often the update is extremely fast, but when numer-
ous pivots are needed it slows down, giving a less pleasant jerky quality to the interaction.
In fairness to the simplex approach, it should be possible to extrapolate the current direc-
tion of the mouse movement and pre-solve some of the pivots; but this has not been done
in any of the current systems. In addition, for use with real-time systems the predictable
response provided by the compiled Fourier code is essential.

8. Complexity analysis

Most variable elimination algorithms have bad worst case complexities. Projecting one
variable from a system of m linear inequalities produces O(m2) inequalities in the worst
case. Hence eliminating n variables from m primitive constraints can be O(m 2n). How-
ever, our empirical results so far have shown quite reasonable performance for practical
problems. In this section we attempt to analyse the situation and point out reasons for this.

One major factor in the reasonable performance of our algorithm is that in many practical
problems each primitive constraint only involves a small number of variables, and hence
the worst case does not arise. There are also a number of restricted cases that do have
much more reasonable worst case complexities. One such restricted case is when each
constraint involves at most 2 variables. The grid benchmark above falls into this category.
The following result is due to Nelson [12].

THEOREM 2 Let C be a set of m inequalities involving n variables where each inequality
involves at most 2 variables. Fourier elimination is O(mnd2 logne+3 logn).

Another example where the worst case phenomena cannot occur is when almost all of
the constraints are equations.

THEOREM 3 Let C be a constraint involving n variables, m linearly independent equa-
tions, and l inequalities. Then there is a choice of variable elimination order where Fourier
elimination is O(nm(m+ l) + l2

n�m

).

Proof: Use the equations to eliminate m variables, leaving l inequalities in n �m vari-
ables. The result follows.

It also appears that, in many practical constraint problems in interactive graphics, the
constraints are not tightly connected. We examine a class of constraint graph which is not
tightly connected. A constraint graph for a constraintC is an undirected graph constructed
as follows. There are nodes for each variable in vars(C) and each primitive constraint
c 2 C. There is an edge between variable node v and primitive constraint node c if
v 2 vars(c). Two nodes x and y in a graph G are bi-connected if there exist two node-
distinct paths in G from x to y. A bi-connected component of a graph G is a maximal

18

set of nodes N such that each pair x; y 2 N; x 6= y is bi-connected in G. A constraint
graph G is k-bi-connected if there are no bi-connected components of G with more than
k variable nodes. The binary tree benchmark is an example where the constraint graph is
3-bi-connected.

THEOREM 4 Let C be a constraint involving n variables and m primitive constraints
whose constraint graph is k-bi-connected. Then there is a choice of variable elimination
order where a slightly modified Fourier elimination algorithm with quasi-syntactic redun-
dancy elimination is O(nm2k).

Proof: We start by forming each bi-connected component of the graph into a cluster.
These clusters form a tree (or a forest, if the original graph was not fully connected). We
proceed to eliminate the clusters one at a time, starting at the leaves.

A leaf cluster will be connected to the rest of the tree via a single node. If that node
represents a variable, say x, our task is easy. We simply project all the constraints in the
cluster onto x. The only possible resultant constraints on x are bounds, and using quasi
syntactic redundancy there can be at most two: l � x and x � u. These bounds are added
to the parent cluster.

If, on the other hand, the connecting node represents a constraint, we introduce a tempo-
rary variable t and split the constraint first. Let the constraint be of the form e 1 + e2 op 0,
where op is either � or =, e1 is a linear expression containing only variables included in
the cluster, and e2 is a linear expression containing no variables from the cluster. Then the
constraint is split into e1+t op 0 and e2�t = 0, with the former being added to the current
leaf cluster, the latter replacing the original constraint, and the variable t being added to
the parent cluster. We then project all the constraints in the current leaf cluster onto t, and
add the resulting bounds to the parent cluster, as before.

Note that the introduction of temporary variables can increase the number of variable
nodes in a cluster. Each temporary variable appears in exactly one equation and at most
two bounds constraints, though we note that more than one temporary variable may appear
in the same equation (if the original constraint was a cut node where several bi-connected
components met). If we eliminate the temporary variables first, it is easy to see that each
equation involving temporary variables yields at most two inequalities involving the re-
maining variables, and that this elimination is O(l), where l temporary variables were
involved. This then leaves a cluster with at most k variables to which the standard Fourier
elimination will be applied.

Eliminating the variables in a leaf cluster never adds more constraints to the parent cluster
than were eliminated in the leaf; hence the maximum number of constraints in any cluster
at any given time is m. The maximum number of variables eliminated in any cluster when
the standard algorithm is applied is k. Hence processing one cluster with the standard
algorithm is O(m2k). There are at most n clusters in the tree, and thus at most n temporary
variables introduced. Hence the complexity result holds.

Theorem 4 in particular constrains the order in which variables can be eliminated. In
interactive graphics problems there are typically two variables with edit constraints (the x
and y coordinates of a point being moved). These variables must be eliminated last. This
is compatible with the ordering required by the theorems if the x and y constraints are

19

independent (as is the case in all our examples, and in many other cases as well). However,
if the problem includes constraints relating the x and y coordinates (e.g. that a shape be a
square), then we may be unable to use the complexity guarantees provided by the theorems.

9. Conclusions

Fourier elimination can be used to generate very fast, constraint-free code to solve prob-
lems arising in interactive graphical applications. The approach is useful for applications
such as real-time systems which need predictable performance, for smoothing the response
time in an interactive system, for producing applications that can be run without employing
a runtime constraint solver, and when execution speed is very important.

The same approach of compiling constraint solving by projection can be applied to any
constraint domain that has a variable elimination function that projects one variable out of a
constraint, along with a method for finding solutions of a conjunction of constraints in one
variable. Constraint domains that meet these requirements include Boolean constraints,
unit two variable per inequality (integer) constraints [11], and partial order constraints.

The current algorithm is a batch one. A direction for future research is the design of an
incremental version, which would reuse part of a previous solution when accommodating
changes in the constraint (beyond simply changing the constants in the v = b constraints).

Some previous work has involved hybrid constraint solving algorithms, which partition
a set of constraints into regions that can then be turned over to an appropriate sub-solver
for that class of constraint and constraint topology [3]. Compilation based on Fourier
elimination is a promising candidate for use in this architecture, to handle cyclic collections
of linear equality and inequality constraints.

Theorem 4 is particularly interesting, because it shows how the structure of the con-
straints to be solved can be exploited to make the actual solving more efficient. Sabin and
Freuder [13] have also studied how the structure of the constraint graph can be exploited;
in their case, they demonstrate substantial improvements in the solving time of random
binary CSPs, by identifying (an approximation of) the cycle cutset of the constraint graph.
This seems a very interesting area to explore further.

Acknowledgements

This project has been funded in part by National Science Foundation Grant IIS-9975990
and by Australian Research Council Large Grant A10017012. Alan Borning’s visit to the
University of Melbourne was sponsored in part by a Fulbright award.

Notes

1. Current address wh@icparc.ic.ac.uk, IC-Parc, William Penney Laboratory, Imperial College, Exhibition
Road, London SW7 2AZ, United Kingdom

20

2. Note that while user interface objects will be mapped to particular pixel locations on the display, and thus
their coordinates should, in theory, be integral, in practice this is usually not necessary (or desirable). For
most applications, rounding real coordinates to the nearest integer point is quite appropriate, so locations on
the screen are treated as reals to make the constraint solving easier. In this work we assume coordinates are
reals. We note that non-linear constraints do arise in user interface applications for such attributes as areas and
angles, and finite domain constraint also arise in handling fonts. In such cases more sophisticated techniques
are required (e.g. [9]).

3. An earlier version of this paper appears as [10].

4. � MAXFLOAT or similar should be sufficient for most applications, but if not, it would be trivial to change
the solver to implement this feature directly.

5. Strictly, their sum is only an accurate representation of the error when at least one of the variables is zero,
but this will be guaranteed by minimising the global error.

References

1. Alan Borning. The programming language aspects of ThingLab, a constraint-oriented simulation labora-
tory. ACM Transactions on Programming Languages and Systems, 3(4):353–387, October 1981.

2. Alan Borning, Richard Anderson, and Bjorn Freeman-Benson. Indigo: A local propagation algorithm
for inequality constraints. In Proceedings of the 1996 ACM Symposium on User Interface Software and
Technology, pages 129–136, Seattle, November 1996.

3. Alan Borning and Bjorn Freeman-Benson. The OTI constraint solver: A constraint library for constructing
interactive graphical user interfaces. In Proceedings of the First International Conference on Principles
and Practice of Constraint Programming, pages 624–628, Cassis, France, September 1995.

4. Alan Borning and Bjorn Freeman-Benson. Ultraviolet: A constraint satisfaction algorithm for interactive
graphics. Constraints: An International Journal, 3(1):9–32, April 1998.

5. Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp and Symbolic
Computation, 5(3):223–270, September 1992.

6. Alan Borning, Richard Lin, and Kim Marriott. Constraints for the web. In Proceedings of Fifth ACM
International Multi-Media Conference, pages 173–182, November 1997.

7. Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving linear arithmetic constraints for user
interface applications. In Proceedings of the 1997 ACM Symposium on User Interface Software and Tech-
nology, pages 87–96, October 1997.

8. Bjorn Freeman-Benson. Object Technology International, Personal communication.
9. Daniel H. Greene and F. Frances Yao. Finite-resolution computational geometry. In Proceedings of the

27th Annual Symposium on the Foundations of Computer Science, pages 143–152. IEEE Computer Society
Press, 1986.

10. W. Harvey, P.J. Stuckey, and A. Borning. Compiling constraint solving using projection. In G. Smolka,
editor, Proceedings of the Third International Conference on Principles and Practices of Constraint Pro-
gramming, LNCS, pages 491–505. Springer-Verlag, October 1997.

11. J. Jaffar, M. J. Maher, P.J. Stuckey, and R.H.C. Yap. Beyond finite domains. In Proceedings of the Inter-
national Workshop on Principle and Practices of Constraint Programming, number 874 in LNCS, pages
86–93, Orcas Island, Washington, May 1994. Springer-Verlag.

12. C.G. Nelson. An nlogn algorithm for the two-variable-per-constraint linear programming satisfiability
problem. Technical Report STAN-CS-78-689, Stanford University, 1978.

13. Daniel Sabin and Eugene C. Freuder. Understanding and improving the MAC algorithm. In G. Smolka,
editor, Proceedings of the Third International Conference on Principles and Practices of Constraint Pro-
gramming, LNCS, pages 167–181. Springer-Verlag, October 1997.

14. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of Mercury: an ef-
ficient purely declarative logic programming language. Journal of Logic Programming, 29(1–3):17–64,
October–December 1996.

