THINGLAB -- A CONSTRAINT-ORIENTED
SIMULATION LABORATORY

by Alan Borning

SSL-79-3 July 1979

Abstract: See next page

CR Categories: 4.22, 3.69, 8.1,8.2

Key Words and Phrases: constraints, constraint satisfaction, object-oriented
languages, part-whole hierarchies, interactive computer graphics, Sketchpad, Smalltalk

This report is a revised version of a Ph. D. thesis submitted to the Department of
Computer Science at Stanford University. It is also available as Stanford Computer
Science Department Report STAN-CS-79-746.

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

by

Alan Hamilton Borning

ii

Abstract

ThingLab is a system that provides an object-oriented environment for building simulations.
Within this environment, part-whole and inheritance hierarchies are used to describe the
structure of a simulation, while constraints are employed as a way of describing the relations
among its parts.

One of the principal goals of this research has been to design and implement a language that
helps the user describe complex simulations easily. Constraints are a particularly important tool
for dealing with complexity, because they allow the user to specify independently all the
relations to be maintained, leaving it up to the system to plan exactly how the constraints are to
be satisfied.

ThingLab is implemented in the Smalltalk-76 programming language, and runs on a personal
computer. Among the things that have been simulated using the system are constrained
geometric objects, a bridge under load, electrical circuits, documents with constraints on their
layout and content, and a graphical calculator.

iii

Acknowledgements

It is a pleasure to thank Alan Kay and all the other members of the Learning Research Group
at Xerox Palo Alto Research Center, both for help with this research and for providing a
congenial and stimulating place in which to work. I would also especially like to thank my
adviser, Terry Winograd, for his many helpful insights and patient advice. Among the other
people who have aided in this effort, I would like to express my gratitude to Giuseppe Attardi,
Danny Bobrow, John Seely Brown, Peter Deutsch, Carl Hewitt, Ken Kahn, Henry Licberman,
David Shaw, Gerry Sussman, Bert Sutherland, and Gio Wiederhold. The Xerox Corporation
generously provided support for doing this research.

iv

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 6

Table of Contents

Introduction L o 1

SomeScenarios Lo 0oL, 14
10 1 T - 38
Constraiits h e e e e e e e e e e e e e e 52
Constraint Satisfaction, 65
Directions for FutureResearch 86
Bibliography e e e e e e 98

List of Illustrations

Figure 2.1 - A typical Smalltalk display
Figure 2.2 - Panes of the ThinglLabwindow
Figure 2.3 - Filling in a subclasstemplate
Figure 2.4 - Positioning the second endpointofaline
Figure 2.5 - The completed quadrilateral
Figure 2.6 - Structure described by the class Quadrilateral
Figure 2.7 - Values of the prototype Quadrilateral
Figure 2.8 - Picture of the prototype MidPointLine
Figure 2.9 - Structure described by the class MidPointLine
Figure 2.10 - Addingamidpoint
Figure 2.11 - Deletingaline
Figure 2.12 - Moving a vertex of the quadrilateral
Figure 2.13 - A quadrilateral with anchored midpoints
Figure 2.14 - Picture of the prototypeforPlus
Figure 2.15 - Picture of the completed Centigrade to Fahrenheit Converter
Figure 2.16 - A PrintingConverter v v v v v v v v e

Figure 2.17 - Editing the Fahrenheit temperature

Figure 2.18 - The temperature converter with thermometers for input and output

Figure 2.19 - A quadratic equationnetwork

vi

Figure 2.20 - Constructing the class QuadraticSolver 26
Figure 2.21 - The network after adding an instance of QuadraticSolver 26
Figure 2.22 - A document with constraints 27

Figure 2.23 - The document after editing the number of employees in United PickPocket 28

Figure 2.24 - Moving thetopofabar 28
Figure 2.25 - A document with layoutconstraints 29
Figure 2.26 - Buildingapanedwindow 30
Figure 2.27 - Moving the corner of a pane in apaned window 30
Figure 2.28 - Twoviewsofatriangle 31
Figure 2.29 - Two triangles connected by a scaling constraint 31
Figure 2.30 - Editing the scaling constraint 31
Figure2.31-Abridgeunderload 32
Figure 2.32 - Building a voltage divider 36
Figure 2.33 - The completed voltage divider 37
Figure 2.34 - Changing a resistance in the voltage divider 37
Figure 5.1 - Moving the vertex of a quadrilateral 65
Figure 5.2 - Avoltagedivider 66
Figure 5.3 - Picture of the prototype SeriesResistors 70
Figure 5.4 - The voltage divider with an added instance of SeriesResistors 70
Figure 5.5 - An instance of DemoRectangle 73
Figure 5.6 - An anchored horizontalline 83
Figure 6.1 - Successive states of alogicclock 90

vii

Chapter 1 - Introduction

Overview of ThingLab

Thinglab is a simulation laboratory. It provides an environment for constructing dynamic
models of experiments in geometry and physics, such as simulations of constrained geometric
objects, simple electrical circuits, mechanical linkages, and bridges under load. Using the
techniques developed for these domains, the system has also been used to model other sorts of
objects, such as a graphical calculator, and documents with constraints on their layout and
contents.

One of the principal goals of this research has been to design and implement a language that
helps the user describe complex simulations easily. Starting with a combination of ideas from
Sketchpad [Sutherland 1963] and Smalltalk [Ingalls 1978], a number of features have been built up.
Part-whole and inheritance hierarchies are used to describe the structure of a simulation.
Constraints are employed as a way of describing the relations among the parts of a simulation.
Constraints are a particularly important tool for dealing with complexity, because they allow the
user to specify all the relations independently of one another, leaving it up to the system to
plan exactly how the constraints are to be satisfied.

Thinglab is implemented in the Smalltalk-76 programming language, and runs on the Alto, a
personal computer developed at Xerox Palo Alto Research Center. All the simulations
described herein are working examples.

The Kernel ThingLab System

The kernel Thinglab system consists of a Smalltalk extension, written by the present author,
that is used in all ThingLab simulations. Embedded in this program is knowledge about such
things as inheritance hierarchies, part-whole relations, and constraint satisfaction techniques.
The kernel system doesn’t have any knowledge about specific domains in which ThinglLab can
be used, such as geometry or electrical circuits. Rather, it provides tools that make it easy to
construct objects that contain such knowledge.

Another goal in constructing the system, besides the exploration of language design as described
above, was to investigate computer-based tools for use in education. For example, a Thinglab-
style system might prove valuable as part of a geometry curriculum, or as an adjunct to a
physics laboratory. With this in mind, it is anticipated that there would be two sorts of users of
the system. The first sort of user would employ ThinglLab to construct a set of building blocks
for a given domain. For cxample, for use in simulating clectrical circuits, such a user would

INTRODUCTION

construct definitions of basic parts such as resistors, batteries, wires, and meters. The second
sort of user could then employ these building blocks to construct and explore particular
simulations. The knowledge and skills required by these two kinds of users would be different.
The first kind of user would need to know about message passing, the constraint specification
language, and so on; and should also be familiar with the physical laws or rules for the given
domain (e.g. Ohm’s Law). The second kind of user, on the other hand, could deal with the
system using only simple interactive graphics techniques, such as selecting items in a menu or
moving pictures around on the screen. Thus, this sort of user wouldn’t need to be familiar with
either the details of ThingLab, or with the domain-specific theory behind the simulation
(although one of the objectives of a curriculum might be for such a user to acquire this domain-
specific knowledge).

Tools for Dealing with Complexity

Interesting systems are usually complex. A simulation that abstracts any significant portion of
such a system will probably be complex as well, making it important for the simulation system
to provide tools for dealing with this. This is particularly true if the system is intended for use
by people who aren’t computer sophisticates, as is ThinglLab. This section is a discussion of the
tools available in Thinglab viewed in this light.

Objects

ThingLab, like Smalltalk, is organized around the idea of objects that communicate by sending
and receiving messages. This object-oriented factorization of knowledge provides one of the
basic organizational tools. For example, in representing a geometric construction, the objects
used in the representation would be things such as points, lines, circles, and triangles. This
provides a natural way of bundling together the information and procedures relevant to each
object. Each object holds its own state, and is also able to send and receive messages to obtain
results.

Hierarchical Decomposition

A powerful method for dealing with complexity is to describe a system hierarchically.
ThingLab provides two kinds of hierarchies: an inheritance hierarchy, and a part-whole
hierarchy.

The inheritance hierarchy uses Smalltalk’s class-instance structure. Object descriptions and
computational methods are organized into classes. Every object is an instance of some class. In
broad terms, a class represents a generic concept, while an instance represents an individual. A
class holds the similarities among a group of objects; instances hold the differences. More

INTRODUCTION

specifically, a class has a description of the internal storage required for each of its instances;
the constraints on its instances; and a dictionary of messages that its instances understand, along
with methods for computing the appropriate responses. An instance holds the particular values
that distinguish it from other instances of its class.

For example, one of the classes defined in Thinglab is class Line. This class describes lines in
general -- it is a description of all line instances, both existing and potential. It specifies that
every line instance should be represented as a pair of endpoints. Lines themselves have no
constraints. Finally, the class Line contains a dictionary of messages that its instances
understand, along with methods for receiving those messages. Some examples of messages that
lines understand are:

point1 - return your first endpoint

printon: stream - print a description of yourself on an output stream

showpicture: window - show your picture in a window.
A line instance has a pointer to its class, and two fields that hold pointers to its endpoints,
which are instances of class Point.

A new class may be defined as a subclass of one or more existing classes. The subclass inherits
the storage specifications, constraints, and message protocol of its superclasses. It may specify
additional storage requirements, constraints, and message behavior of its own; it may delete or
replace inherited constraints; and it may override inherited responses to messages. For
example, one of the subclasses of Line is HorizontalLine. HorizontallLine inherits all the traits
of Line, and adds a constraint that the y values of its endpoints be equal. The most abstract
class in the system is class Object; all other classes in the system are descended from it.

The other kind of hierarchy in Thinglab is the part-whole hierarchy. In ThinglLab, every
object is composed of named parts, each of which is itself an object. The parts are thus
composed of subparts, and so on. For example, a triangle is composed of three parts: its sides.
Each side in turn has two endpoints; the endpoints have x and y coordinates. Note the relation
between the inheritance and part-whole hierarchies: the triangle is an instance of class Triangle;
its parts are instances of class Line; their endpoints are instances of class Point; and finally the
coordinates are instances of class Integer. Each class contains a set of part descriptions that list
the common properties of the corresponding parts of each of its instances. Thus, the class
Triangle specifies that each of its instances should have three parts named side/, side2, and
side3; and that each of these parts should be instances of class Line.

It is rare for the decomposition of an object into parts to be completely linear, i.e. such that
there are no interactions among the parts. For example, each side of the triangle shares its
endpoints with the other sides. If the triangle were constrained to have a horizontal base, there
would be other interactions among the endpoints (the y values of the endpoints of the base
would have to be equal). Thinglab provides ways of representing and reasoning about these

INTRODUCTION

interactions, as will be described in the next section.

Constraints

The basic tool for representing relations among parts is the constraint. A constraint specifies a
relation that must always be satisfied. Here are some examples of constraints that have been
defined in Thinglab by its various users:
a constraint that a line be horizontal;
a constraint that one triangle be twice as big as another;
a constraint that the digits displayed in an editable paragraph correspond to the height of a
bar in a bar chart;
a constraint that a resistor obey Ohm’s law;
a constraint determining the gray scale level of an area on the computer’s display; and
a constraint that a rectangle on the display be precisely big enough to hold a given
paragraph.

A key fact about constraints is that the relation to be satisfied is separated from the process by
which it is satisfied. All the constraints on a simulation can be specified independently of one
another. It is up to the system to decide whether or not they can all be satisfied
simultaneously, and if so, how to satisfy them. Constraints are thus a powerful tool for dealing
with complexity. Although the interactions among the parts of the system may be numerous,
the user can specify each relation without worrying about the others.

Constraints reflect a way that humans might think about a large class of situations. In
mathematics, the hypotheses of a theorem, along with the fundamental axioms, may be viewed
as constraints. The laws of physics may be thought of as constraints that physical objects must
obey. Other branches of the physical and social sciences have built up some laws of this sort,
e.g. valences in chemistry. In design, constraints represent the requirements that the thing being
designed must satisfy.

In a simulation environment, constraints serve not only as descriptions of the simulated object,
but also as commands to the system telling it that certain conditions must be satisfied. This
makes the model of a system a dynamic, reactive one -- the user can prod it and observe its
responses. '

The User Interface

The Thinglab user interface incorporates a number of tools for dealing with complexity.
Multiple viewpoints are supported: a typical object can be depicted in several ways, for
example, as a picture, as a structural description, or as a table of values. The object itself
defines the views that it can provide. Some quite general graphical editing tools are provided,

INTRODUCTION

and purely graphical objects, such as a triangle, can be constructed using graphical techniques
alone. When the user edits an object, say by selecting a point and moving it with the cursor,
the user interface automatically asks the object for a plan for moving the point while keeping all
its constraints satisfied.

Constraint Representation and Satisfaction

Representation of Constraints

The representation of constraints reflects their dual nature as both descriptions and commands.
Constraints in ThingLab are represented as a rule and a set of methods that can be invoked to
satisfy the constraint. The rule is used by the system to construct a procedural test for checking
whether or not the constraint is satisfied, and to construct an error expression that indicates how
well the constraint is satisfied. The methods describe alternate ways of satisfying the constraint;
if any one of the methods is invoked, the constraint will be satisfied.

Merges

An important special case of a constraint is a merge. When several parts are merged, they are
constrained to be identical. For efficiency, they are usually replaced by a single part, rather
than being kept as several separate objects. The owner of the parts keeps a symbolic
representation of the merge for use in constraint satisfaction, as well as for reconstruction of the
original parts if the merge is deleted. One use of merging is to represent connectivity. For
example, to connect two sides of the triangle, an endpoint from one side is merged with an
endpoint of the other. Another use of merging is to apply pre-defined constraints. Thus, to
constrain the base of the triangle to be horizontal, one can simply merge an instance of
HorizontalLine with the side to be constrained.

Constraint Satisfaction

It is up to the user to specify the constraints on an object; but it is up to the system to satisfy
them. Satisfying constraints is not always trivial. A basic problem is that constraints are
typically multi-directional. For example, the horizontal line constraint is allowed to change
cither endpoint of the line. Thus, one of the tasks of the system is to choose among several
possible ways of locally satisfying each constraint. One constraint may interfere with another;
in general, the collection of all the constraints on an object may be incomplete, circular, or
contradictory. Again, it is up to the system to sort this out.

The approach taken in ThingLab is first to analyze the constraints on an object and plan how to
satisfy them, and then to make the actual changes to satisfy the constraints. In ThingLab, the

INTRODUCTION

particular values that an object holds usually change much more rapidly than its structure. For
example, if on the display the user moves some part of a constrained geometric object with the
cursor, the values held by this object will change every time its picture is refreshed. Each time
some value is changed, other values may need to be changed as well to keep the constraints
satisfied. However, the object’s structure will change only when the user adds or deletes a part
or constraint. The design of the Thinglab constraint satisfaction mechanism is optimized for
this environment. A constraint satisfaction plan may depend on the particular structure of an
object, but should work for any values that the object might hold. (If not, appropriate tests
must be included as part of the plan.) Once a plan for satisfying some constraints has been
constructed, Smalltalk code is compiled to carry out this plan. Thus, each time the part of the
constrained geometric object is moved, it is this pre-compiled method that is invoked, rather
than a general interpretive mechanism. Also, the plan is remembered in case it is needed again.
Planning is done using symbolic references to the constrained parts, so that the same plan may
be used by all instances of a class. If the class structure is changed so that the plan becomes
obsolete, it will be automatically forgotten.

When an object is asked to make a change to one of its parts or subparts, it gathers up all the
constraints that might be affected by the change, and plans a method for satisfying them. In
planning a constraint satisfaction method, the object will first attempt to find a one-pass
ordering for satisfying the constraints. There are two techniques available in ThingLab for
doing this: propagation of degrees of freedom, and propagation of known states. In
propagating degrees of freedom, the constraint satisfier looks for an object with enough degrees
of freedom so that it can be altered to satisfy all its constraints. If such an object is found, that
object and all the constraints that apply to it can be removed from further consideration. Once
this is done, another object may acquire enough degrees of freedom to satisfy all its constraints.
The process continues in this manner until either all constraints have been taken care of, or
until no more degrees of freedom can be propagated. In the second technique, propagating
known states, the constraint satisfier looks for objects whose states are completely known. If
such an object is found, the constraint satisfier will look for one-step deductions that allow the
states of other objects to be known, and so on recursively.

If there are constraints that cannot be handled by either of these techniques, the object will
invoke a method for dealing with circularity. Currently, the classical relaxation method is the
only such method available. As will be described in Chapter 5, relaxation can be used only
with certain numerical constraints, and is also slow. In this method, the object changes each of
its numerical values in turn so as to minimize the error expressions of its constraints. These
changes are determined by approximating the constraints on a given value as a set of linear
equations by finding the derivative of the error expressions with respect to the value, and
solving this set of equations. Relaxation continues until all the constraints are satisfied (all the
errors are less than some cutoff), or until the system decides that it cannot satisfy the constraints
(the errors fail to decrease after an iteration).

e i Bl i o i s S e R e o i

INTRODUCTION 7

If the relaxation method is used, the system issues a warning message to the user. The user can
either let things stand, or else supply additional information in the form of redundant
constraints that eliminate the need for relaxation.

Where are Constraints Useful?

Where are constraints useful? In discussing this question, it is important to differentiate what
can be expressed using constraints from what sets of constraints can be safisfied. Many more
things can be expressed than can be satisfied. For example, it is easy to state the following
constraints:
xn + yn = zn

X, ¥, z, n integers

X, ¥v,2z>0

n> 2
However, finding values that satisfy these constraints, or proving that no such values exist,

requires either a counterexample or a proof of Fermat’s Last Theorem.

What can be expressed using constraints? To express a relation as a constraint, the following
information is needed: a rule (from which the system will derive a satisfaction test and an error
expression); and one or more methods for satisfying the constraint. For numerical constraints,
the methods may be omitted if the user is willing to live with the relaxation method. Any
relation that must always hold, and for which this information can be supplied, may be
expressed as a constraint. Some relations that cannot be expressed as constraints in a general
way using current Thinglab techniques include: any relation involving ordering or time;
relations that need hold only under certain conditions; and meta-constraints (constraints on
other constraints Or on constraint satisfaction strategies).

What sets of constraints can be satisfied? If the constraint dependency graph has no
circularities, or if the circularities can all be broken using one-step deductions, then the one-pass
constraint satisfaction techniques will always succeed, and will provide correct results. Further,
the constraints can be satisfied, or determined to be unsatisfiable, in time proportional to that
required to execute the local methods provided by the constraints. If the dependency graph
does have circularities that cannot be broken by one-step deductions, the constraints can still be
satisfied if the circular parts of the graph all involve numerical constraints for which relaxation
can be used. These constraints must either be linear, or else constraints for which linearization
is an adequate approximation. An example of a set of circular constraints for which the
relaxation method does nor work are those that describe a cryptarithmetic problem, e.g.
DONALD + GERALD = ROBERT with D=35. [See Newell & Simon 1972 for a description of this
domain] Relaxation is useless here, since the constraints cannot be approximated by linear
equations. To solve such kinds of problems, other constraint satisfaction techniques would be
needed, such as heuristic search.

INTRODUCTION

Relation to Other Work

As mentioned previously, the two principal ancestors of Thingl.ab are Sketchpad and Smalltalk.
It is also closely related to work on constraints by Gerald Sussman and his students; other
related work includes Simula, the Actor languages, KRL, and a number of problem solving
systems. Following a discussion of these and other systems, a summary of the novel features of
ThingLab is presented.

Sketchpad

One of the principal influences on the design of ThingLab has been Sketchpad [Sutherland 1963].
Sketchpad was a general-purpose system for drawing and editing pictures on a computer. The
user interacted directly with the display, using a light pen for adding, moving, and deleting
parts of the drawing. Sketchpad’s influence on the field of computer graphics has been
tremendous. However, it contained many other important ideas besides that of interacting with
a computer using pictures; and these ideas have been less widely followed up. In reading the
following description, remember that this program was written in 1962!

Sketchpad allowed the user to define new kinds of pictures by composing primitive picture
types (points, line segments, and circle arcs), and other user-defined pictures. These picture
definitions could be used in two ways. First, the user could copy the picture definition, and use
this copy in composing another picture. No record was maintained of the relation between the
copy and the original, and the user was free to modify the copy in any way. Second, the
picture definition could be used as a master for making arbitrarily many instances. Each
instance had the same shape as the master, but could be translated, rotated, and scaled. In this
case, if the master was edited, each instance would change correspondingly. In the master,
certain points could be designated as attachers. The corresponding points in each instance
could be used to connect it to points in the rest of the picture.

Constraints were used to specify conditions that the picture had to satisfy. For example, one
could constrain a line to be horizontal, or a point to lie on a line. Constraints were uniformly
described using error expressions, each of which returned a number indicating how well the
constraint was satisfied. The system would adjust the constrained variables to minimize the
values of these error expressions. Two methods for satisfying constraints were available:
propagation of degrees of freedom ("the one-pass method") and relaxation.

The operation of recursive merging was used to connect parts of the drawing, and to apply pre-
defined constraints. For example, to connect two sides of a polygon, an endpoint from one line
was merged with an endpoint from the other. To constrain a line to be horizontal, first the
constraint definition was copied, and then each endpoint of the copy was merged with the
corresponding endpoint of the line in the picture. The resulting topology of the picture was

INTRODUCTION

explicitly stored in ring structures. For example, every point had a ring of lines that terminated
on it, while every line had pointers to its endpoints. These structures were automatically
updated as the user edited the picture.

ThingLab has adopted much of Sketchpad’s flavor of user interaction, and the Sketchpad
notions of constraints and of recursive merging have been central to its design.

ThingLab extends Sketchpad in a number of ways. The Sketchpad domain of constrained
geometric objects has been expanded to include domains that are not purely graphical. For
example, an object like a resistor has a picture, but also contains information such as its
resistance and the voltage across it. ThinglLab uses Smalltalk’s class-instance structure. This
mechanism is more general than the master-instance relation in Sketchpad, since Smalltalk
instances have internal variables that can hold whatever instance state is desired.

Constraints in ThingLab can apply to non-numeric objects such as text, as well as to numeric
values. While Sketchpad constraints were uniformly described using error expressions, in
ThingLab local procedures for satisfying the constraint may be included as part of its definition.
[Thinglab started out using only error expressions. Later, the use of local procedures was permitted to allow
constraints to apply to non-numeric objects, as well as to speed up the program.] In addition to the
Sketchpad constraint satisfaction methods, Thinglab provides a method for propagating known
states. Constraint satisfaction in ThingLab has been divided into two stages: planning and run-
time. During planning, a plan is generated for satisfying the constraints, and is then compiled
as a Smalltalk method. At run-time, it is this compiled code that is invoked. Typically, the
same plan will be used many times.

Internally, ThingLab objects are stored in a manner somewhat different from that used in
Sketchpad. In contrast to Sketchpad’s extensive ring structures, Thinglab uses no back
pointers; rather, information about constraints and merges is represented using symbolic paths
to the affected parts. These constraints and merges are associated with an entire class, and
apply to each instance of that class. The ThingLab scheme has the advantage that objects are
stored much more compactly, and less manipulation of pointers is required. On the other hand,
it requires that a new class be defined whenever an object with a new kind of topology is to be
constructed. It would be useful also to have a class of objects represented in such a way that
constraints and merges could be associated with particular instances of that class, while
preserving the efficiency of the current scheme for places where it is more appropriate.

Smalltalk

The other principal ancestor of ThingLab is Smalltalk [Kay 1972a, Kay 1972b, Kay & Goldberg 1977,
Kay 1977, Ingalls 1978). Thinglab started out as a system simulated in Smalltalk, but has evolved
to become an extension of Smalltalk. The important ideas in Smalltalk -- objects, classes and
instances, and messages -- are now all used directly in ThingLab. As these ideas were needed

10 INTRODUCTION

in presenting the overview of Thinglab, they have been described previously. [A reader who is
unfamiliar with Smalltalk should be able to understand Chapters 1 and 2; however, the remaining chapters assume

familiarity with Ingalls 1978]

ThingLab adds a number of new features to Smalltalk, including constraints, a facility for
defining classes by example, and multiple superclasses. Also, a large number of declarative
structures have been implemented that describe information previously embedded only in
Smalltalk’s computational methods and object references. Most of these declarative structures
have been implemented in response to the demands of constraint satisfaction. In satisfying
constraints, it is necessary to reason about the interactions among the parts of an object. To
allow this, the static structure of an object is described using parts and part descriptions. Any
sharing of parts must be explicitly represented using a merge. The dynamic relations among the
parts are represented with constraints.

Smalltalk is an evolving system. Discussion regarding the next major version of Smalltalk is
currently under way in the Learning Research Group, and it is likely that many of the ideas
developed in ThingLab will find their way into the Smalltalk language itself. Some thoughts on
this topic may be found in Chapter 6.

Work by Gerald Sussman and his Students

ThingLab is related to recent work on a constraint language at MIT by Guy Steele and Gerald
Sussman [Steele & Sussman 1978], and also to other work by Sussman and his students on the
problem of applying artificial intelligence techniques to computer-aided design [Sussman &
Stallman 1975, Stallman & Sussman 1977, Doyle 1977, de Kleer & Sussman 1978].

The ThingLab representation of an object in terms of parts and subparts, with explicit
representation of shared parts, is nearly isomorphic to the representation independently
developed by Steele and Sussman. Their system has a built-in set of primitive constraints, such
as adders and multipliers. Using these primitive constraints, compound constraints can be built
up. This is much like the method used in the Thinglab calculator example described in
Chapter 2. These similarities are interesting, given the rather different environments in which
the systems were written (LISP and Smalltalk).

To handle constraints that cannot be satisfied using a one-pass ordering, they employ multiple
redundant views that can cooperate in solving the problem; in their previous work, symbolic
algebraic manipulation techniques were employed. They note that powerful algebraic
manipulation techniques alone are not enough to sclve many interesting problems that can be
solved by people; rather, ways are needed of organizing the solution so that the system can use
canned theorems, coupled with simple algebra only. Multiple views are one way of
encapsulating such theorems. Their use of multiple views has been adopted in ThingLab
directly, and the voltage divider example in Chapter S is taken from their work. ThinglLab does

INTRODUCTION 11

not have any symbolic algebraic capabilities.

Their language retains dependency information -- a record of the justifications for each
conclusion -- to identify which constraints are responsible in the event of an inconsistency, for
use in propagating the effects of an edit, and to allow efficient backtracking when search is
needed (dependency-directed backtracking). [Since ThingLab has no dependency information, when the
structure of an object changes it checks more things, and throws away more constraint satisfaction plans, than it

really needs to.]

On the other hand, Thinglab has a number of features that are not present in their language.
Steele and Sussman have an abstraction mechanism like the one used in Thingl.ab for building
a class given a prototypical example, but do not have a general inheritance hierarchy that allows
subclassing. Their system does not have any graphics. In regard to constraints, Thinglab
allows constraints on non-numerical objects such as text, as well as on numerical quantities, and
can express preferences in addition to absolute requirements. Also, it incrementally compiles
the results of constraint satisfaction planning, rather than using an interpreter.

Early Constraint Languages

Ideas about constraint languages have been around for some time. M. V. Wilkes [Wilkes 1964]
proposed that constraint statements be allowed in an Algol-like programming language. The
compiler would use symbolic differentiation to find a linearized form of the constraint
statement; at run-time, relaxation techniques would be used to satisfy the constraints. Richard
Fikes [Fikes 1970] constructed a system, REF-ARF, for solving problems stated as procedures. In
the programming language REF, select functions were used to indicate the permissible values
for a variable, while condition statements were used to build up sets of constraints that the
variables had to satisfy. ARF, the problem solver, then attempted to find values for the
variables that satisfied all the conditions by first using a number of rather clever constraint
manipulation methods to limit the possible values of the variables, followed by a GPS-style
search to find an answer. ABSET [Elcock e al 1971] was a set-oriented language developed at the
University of Aberdeen. It allowed statements of the form A+ B=3 AND A=1I; given this
statement, it could deduce B’s value. ABSET had a number of interesting features: it
emphasized the avoidance of unnecessary ordering restrictions in the statement of a program;
and it allowed assertions (or constraints) to apply to non-numeric objects such as sets or text.

Other Languages

One of the principal ancestors of Smalltalk is the programming language Simula, which was one
of the first systems to use the concepts of classes, subclasses, and instances [Dahl & Nygaard 1966,
Dahl, Myhrhaug, & Nygaard 1970]. The Simula notion of an evenf plays an important part in the
proposed way of dealing with constraints on time that is described in Chapter 6. The idea of

12 INTRODUCTION

objects that communicate by passing messages is used in the Actor languages developed by Carl
Hewitt and his students [Hewitt 1976, Yonezawa and Hewitt 1977). Both the Actor languages, and the
Director language developed by Kenneth Kahn [Kahn 1978], have also been very useful in
thinking about constraints on time.

Other relevant work includes representation languages, in particular KRL [Bobrow & Winograd
1977a, Bobrow & Winograd 1977b]. Ideas in KRL regarding object-centered factorization of
knowledge and the inheritance of properties have been very helpful. A comparison of the
approaches taken in KRL and Thinglab to the questions of inheritance and the relation
between classes and instances may be found in Chapter 3. Such questions also arise in the
design of semantic nets [see eg Woods 1975, and Brachman 1976].

Problem Solving Systems

There is a large body of work in artificial intelligence on problem solving systems of various
kinds. Most of these systems are concerned with more complex problem-solving tasks than
those tackled in ThingLab. In contrast, in Thingl.ab much of the emphasis has been on finding
ways of generalizing plans and compiling them as procedures so that they may be used
efficiently in a graphical environment. However, the problem solving techniques developed in
these other systems may well prove useful if ThingLab’s constraint satisfaction abilities are to be
strengthened.

In the domain of physics, Johan de Kleer describes a program, Newton, that understands and
solves problems in the mini-world of objects moving on surfaces [de Kleer 1975]. Emphasis is
placed on planning the solution to a problem using the technique of envisionment, or qualitative
simulation of the event. Another mechanics problem solving system is the MECHO program
[Bundy 1978], which has been used for a number of kinds of mechanics problems, including
pulley problems, and also the roller-coaster problems investigated by de Kleer.

A rather different sort of physics problem solver is the Mechanisms Lab developed by Chuck
Rieger and Milt Grinberg [Rieger and Grinberg 19771 The Mechanisms Lab uses a cause-effect
representation to describe both natural and artificial systems. Given such a declarative
representation of a system, their program can then translate this representation into a population
of associatively triggerable procedures, which can in turn be used to simulate the system under
consideration.

There has also been considerable work in the more general domain of planning how to solve a
problem, from the venerable General Problem Solver onward. In the work of Sacerdoti on
planning nets [Sacerdoti 1975], and the related work of Tate [Tate 1977), plans are represented as a
partial ordering of actions with respect to time, without premature commitments to a particular
order for achieving subgoals. This methodology is compatible with the approach to constraint

T T

INTRODUCTION 13

specification taken in Thinglab, and may prove useful in expressing and satisfying constraints
involving time (see Chapter 6).

ThingLab

Finally, a preliminary description of ThingLab itself was published in the IJCAI-77 proceedings
[Borning 1977).

Novel Features of ThingLab

It is customary in documents such as this to give an explicit statement of what is new. Here is
the author’s list of novel features of ThingLab:

» An hierarchical part-whole representation of objects has been developed that includes an
explicit, symbolic representation of shared substructure. Virtually the same
representation has been independently invented by Steele and Sussman.

» The Smalltalk class-instance structure has been extended by the inclusion of multiple
superclasses, prototypes, and a facility for class definition by example.

» A representation for constraints is used that bundles together a declarative description of
the constraint with procedures for satisfying it.

» Constraint satisfaction techniques have been implemented that incrementally analyze
constraint interactions and compile the results of this analysis into executable code.

» A user interface has been implemented that provides multiple views on each object, along
with appropriate editing facilities for these views. The object itself defines the views
that it can provide.

Chapter 2 - Some Scenarios

An Introductory Example

This chapter presents some examples of Thinglab in operation. As an introductory example,
we will use ThingLab to construct a quadrilateral and view it in several ways. We will then use
the system to demonstrate a theorem about quadrilaterals. Before presenting the example, a
brief introduction to the Thinglab user interface is needed.

The user interacts with ThinglLab via a window, a rectangular area on the computer’s display.
The window notion is central to Smalltalk’s user interface philosophy. The Thinglab window
described here is typically one of several windows on the screen, with other windows being
available for debugging, editing system code, freehand sketching, and so on. [The ThingLab user
interface is part of the kernel ThingLab system, and was adapted from the Smalltalk class editor designed by Larry
Tesler. See Ingalls 1978, and Goldberg & Robson 1979, for more information about windows and the Smalltalk
user interface.]

WS FISTONE, WSET il
nszr quit Then: "EMaRup'
CAGnwes L.

RO fil: 'Gemaset edit.

Figure 2.1 - A Smalltalk display

The Thinglab window is divided into five panes: the class pane, the format pane, the messages
pane, the arguments pane, and the picture pane. The class pane is a menu of names of classes

e —— |

SOME SCENARIOS 15

that may be viewed and edited. Once a class has been selected, a menu of formats in which it
can display itself appears in the pane immediately to the right. The class shows itself in the
chosen format in the large pane at the bottom of the window labelled picture.

The two remaining panes, messages and arguments, contain menus used for graphical editing of
the class’s prototype. All editing operations are performed by sending a message to the object
being edited; the Thinglab window allows us to compose and send certain kinds of editing
messages graphically. The messages pane contains a list of message names, such insert and
delete, while the arguments pane contains a list of possible classes for the message argument.
The argument itself will be an instance of that class, cither newly created or selected from
among the parts in the picture. [A black stripe in a menu pane indicates a selected item. Thus in Figure

2.2, Triangle and prototype’s picture have been selected.]

class format messages arguments
pane pane pane pane

Tine e v st e ot s s et o o e s s o et it s v e o o]
MutPointline SEIUCTUNE insery Genmetric Object
Object mw dclete Line

Paint protocype’s values |constrain MidPointline
Rectanite as save file merge Poing

TextThing subclass template |move Rectangle

UG R | ~ ~ - edit text Triangie

picture pane

Figure 2.2 - Panes of the ThingLab window

Defining the Class of Quadrilaterals

The first thing we will do in this example is to define the class of quadrilaterals. New classes
are always defined as a subclass of some more general class. [If nothing better is available, they can be
made subclasses of class Object, the most general class in the system] We select GeometricObject in the
class pane, and the phrase subclass template in the format pane (see Figure 2.3).
GeometricObject responds by displaying in the picture pane a template for making a new
subclass of itself, which we fill in by typing the name Quadrilateral. The system creates the
new subclass, adds its name to the menu in the class pane, and selects the new menu item.

16 SOME SCENARIOS

the structure e e o s e o e s e e e ot s s s e
MidPointline prototupe’s picture
Qbject prototipe's values
Point a3 sale file
Rectandte
TextThing ~ |[—~— e
Triangle
Name of Class: Quadnilateral

Figure 2.3 - Filling in a subclass template

One of the important features of the Thinglab environment is that the user can define classes
by example. More precisely, the structural aspects of a class (its part descriptions and
constraints), may be specified incrementally by editing its prototypical instance. We will define
the class Quadrilateral in this way. We select the words prototype’s picture in the format pane.
The class Quadrilateral creates its prototypical instance, and asks this instance to show itself. So
far, the prototype has no parts, and so its picture is blank. In addition to showing its picture,
the prototype lists the editing messages that we may send to it in the message pane, and the
possible classes of the arguments for these messages in the argument pane. [The lists of formats,
messages, and arguments are each obtained by sending a message to the class being edited. In this case, the lists of
formats and messages were both the defaults inherited from class Object, while the list of argument classes was
inherited from GeometricObject.]

We will edit the prototype by adding and connecting four sides. We select the word insert in
the message pane, and the word Line in the argument pane. When we move the cursor into
the bottom pane, a blinking picture of a line appears, attached to the cursor by one of its
endpoints. As the cursor is moved, the entire line follows. When the endpoint attached to the
cursor is in the desired location, we press a button. This first endpoint stops moving, and the
cursor jumps to the second endpoint. The second endpoint follows the cursor, but this time the
first endpoint remains stationary. We press the button again to position the second endpoint
(Figure 2.4). [All this behavior arises because the class Line declares the two endpoints of each line instance to

be attachers.)

NMudFointline o e o e s v o v e | s s s ot
Qbiect EUCTUE Geame i Object

Point mm "LEW
Emm- profotupe’s valugs Joonstrain ulFotncling
ectandle as save file merge Poing

TextThing subclass template [move Rectangle
THangle = e e cdit text Triandle

oo s st w0 s ot oo o s e e s o soes s s =

e

e

Figure 2.4 - Positioning the second endpoint of a line

e e R s e R T A O L ey |

SOME SCENARIOS

17

We insert another line in the same way. To connect the new line to the first, we position the

endpoint attached to the cursor near one of the endpoints of the first line.

When the two

points are close together, the moving point will lock onto the stationary point, and the line will
stop blinking. This indicates that the two points will merge if the button is pressed. We press
the button and the points merge. The two lines now share a common endpoint. Also, a record
of the merge is kept by the class Quadrilateral. Similarly, we position the other endpoint, and
insert the remaining two lines (Figure 2.5).

MutPointline
Qbiect
Paint

TextThi
Trangi

E('-C (\'Hllﬁ‘-

SEUCTWIEC insery GeometnicOpject
I delete ine

prototype’s valugs Jeonscrain MidPointline
as save file merge Point

subclass tempiate Jmove Rectangle
—————————— edit text Triangle

-

,,//\\/

Figure 2.5 - The completed quadrilateral

During this editing session, the system has been updating the structure common to all
quadrilaterals that is stored in the class Quadrilateral, as well as saving the particular locations
of the prototype’s sides. To see the structure of the class Quadrilateral, we select structure in
the menu of formats. The class responds by listing its name, superclasses, part descriptions, and
constraints (Figure 2.6). We may also view the values stored in the prototype by selecting
prototype’s values (Figure 2.7). [In the table of values, a point with x=10 and y=20 is written as 10 20]

MutPotntline o o s et s e s s s o s e e 4 [NUAPOUNE LN s s e s s s i s o e ot e s e s i s s i e
Qbiect mm_ B R P [L] [4 SUUCTUE e v e s s It
Poing Hpe's plottite Faint OO '
d De's palues >
ectangle a3 ile eCtatule
TextThing lass template TextThing
Thangle ~ |~ Trianale
Class Quadnlareral Quadnlateral prototype

Superclasses
GeometncObject

Part Descriprions
parti: a Line
prte: a Line
partd: a Line
parid: a lineg

Merges
PMT2 poinez = part3 pointl
P potnti = partd point2
PAre3 potne2 & partd point!
partt pointz = parez pointi

part: a Line
poingl: 740105
POIRI: 166027
part: a Line
pointt: 166@27
poing2: 377072
partl: a Line
pointi: 377272
poine2: 264 @193
partd: a line
Pointl: 2649193
point2: 74105

Figure 2.6

Structure described by the class Quadrilateral

Figure 2.7

Values of the prototype Quadrilateral

Having constructed the class Quadrilateral, we index it in the list of classes useful in geometric

constructions. [This is currently done by typing and executing a Smalltalk statement; eventually, this should be

handled graphically.]

18 SOME SCENARIOS

Demonstrating a Geometry Theorem

We may now use the new class in demonstrating a geometry theorem. The theorem states that
given an arbitrary quadrilateral, if one bisects each of the sides and draws lines between the
adjacent midpoints, the new lines will form a parallelogram. [The idea of demonstrating this theorem
with ThingLab was suggested by John Seely Brown] In the construction, instances of the class
MidPointLine will be used to represent bisected lines. The class MidPointLine specifies that
each of its instances has two parts: a line and a point. In addition, it has a constraint that, for
each instance, the point be halfway between the endpoints of the line. This class has already
becn constructed by an experienced user as part of the package of geometric classes. Let’s look
at it in two different formats (Figures 2.8 and 2.9).

"—'—'17- e L e e Y e e o e
W SUIUCTUTE insert GeometnicObject %’:Lmlmm- buuciute | Rttt i
Point delete Line Paint POLOLYPC'S peture

Quadrilateral profocype’s values jeonscrain. Foint Quadrilateral prafocipe's alues

Rectandte as save file merge Rectangie Rectande as save file

TextThing subclass template |maove Tnangle TextThing subclass template

Trangle = e e e e PAIL TEXT e e e s e e o] Trangle = |

s MidFointlthe
Superchisses
e GeometricObject
Part Descriprions
ine: a Line
midpoint: a Point
Consgratnts .
midpoint = (line poingl + line poing2) / 2
ridpoint & (lin¢ poinct + Uné poing2) /2
ling potnrt < Ling point2 + ((midpoinc-line poinc2)#2)
ling poinf2 ¢ line pownti + ((midpoing-tine poinit)42)

Figure 2.8 Figure 2.9
Picture of the prototype MidPointLine Structure described by the class MidPointLine

To perform the construction, we will make a new class named QTheorem. As before, we create
it as a subclass of GeometricObject, and define it by example. We select prototype’s picture in
the format pane. We will first add an instance of class Quadrilateral as a part. We select insert
and Quadrilateral. As we move the cursor into the bottom pane, a blinking picture appears of a
quadrilateral whose shape has been copied from the prototype. Since we didn’t declare
otherwise, the entire instance is the attacher. [Another reasonable choice would have been to designate the
four corners as attachers. Designation of attachers is currently handled by typing and executing a Smalltalk
statement] We position the quadrilateral and press a button.

The next step is to add midpoints to the sides of the quadrilateral. We select the message
constrain and the argument MidPointLine. A blinking picture of an instance of MidPointLine
appears. As with the quadrilateral, the shape of the new MidPointLine instance has been
copied from the prototype. When the action is constrain, its line part is the attacher. We move
the MidPointLine near the center of one of the sides of the quadrilateral and press the button,
thus merging the line part of the midpoint with the side of the quadrilateral. Similarly, we add
midpoints to the other three sides (Figure 2.10).

SOME SCENARIOS 19

Omc_\-(© s e snen v st s v s s st s ns s 4 0 S50 038t s oo st s st 14
Point S UUCTUIE insert GeometricObject
thecrern glioouipe s pic G Line

Suaarater ProCoLpe's valtes Prdfondins |
Rectanadle as save file nmerge otne

TextThing subclass template |move Quadrilateral
Triangle = | edit text Rectangle

e o s st e e e e e] s e e | THANGR

X

Figure 2.10 - Adding a midpoint

The last step is to add four lines connecting the midpoints to form the parallelogram. If we
make a mistake along the way, the delete message may be used to remove the offending object.
For example, to delete a line, we select delete and Line. A complemented image of a line
appears that is attached to the cursor (Figure 2.11). This anti-line sticks to lines in the picture.
When we position it near the unwanted line and push the button, the line and the anti-line
annihilate each other.

Point SLPUCTUIC insert Geometric Object

Qbiect TR B
1 elete

Cuadrilage prototype’s values |conscran AulFotncling

Rectanale as sae file merge Point

TextThing subclass template jmove Quadrilaterai

Triangle ©~ |~ edit text Rectanale

e s s i oo st o o e et o e s o | OGN

Figure 2.11 - Deleting a line

Once the construction is complete, we may move any of the parts of the prototype QTheorem
and observe the results. In general, it will not be enough for the system simply to move the
selected part; because of the constraints we have placed on the object, other parts, such as the
midpoints, may need to be moved as well to keep all the constraints satisfied. Suppose we want
to move a vertex. We select the message move and the argument Point. A blinking point
appears in the picture that is attached to the cursor. We position it over the vertex to be
moved and hold down a button. The vertex follows the cursor until the button is released
(Figure 2.12). [The first time we try to move the vertex, there will be a long pause as the system plans how to
satisfy the constraints] ~We notice that indeed the lines connecting the midpoints form a
parallelogram no matter how the quadrilateral is deformed. The theorem remains true even
when the quadrilateral is turned inside out!

20 SOME SCENARIOS

Qb t RPNURITVIPRREIRSNIE PRSI I prpIpp—p—p—_—— § (Al ¢

s insery Geometric Object Fatht m lc TUIe insery GeometricObject

0 2 1¢
Theorem - Jlprotocype s piccurel g Line theorem m@ dclete Line
Quuaadrilarer prototype’s Dalugs Joonstrain MutFoincling Quadribarer profocype’s values fronstrain MitPoincline

Rectangle as save file merge Rectanale as save file merge
Text Thing subclass template HP_ Quadrilater TextThing subclass templuw zy_ Vuadriater
Rectangle Trmnalt mmmmmmmmm 10 Cext Rectanale

Yrmnqw ~~~~~~~~~ ealr text

et o | T EUATURD e PR et e s e e | TPUATUNES

Qbiecet B T e e e e s [_W[\lcl't A At st WA AR Aron s] A A S e A D SO PG D M’wm—tw‘—‘“.—q

1 ZOUCTUIE insert JCszterb]eCt Potng SO T insert GeometricObjecs
pe delete Lin mnrm’ng:m delete ine

Quuadrilier pmmtupc S values |constrain HmF‘nmcum Quundrilarer profaipe’s vaties foonstrain MitPainclLing

Rectanile as save fie merge Recrangle as save fue merae

TextThing subclass template W_ Ouadrdater TextThing subclass template uididazer

Trianale Rectanale Thangle ~ e edit text Rectangle

i e e e - A Triangle e o e s s s s s s e s oo s | TOATUHG

Figure 2.12 - Moving a vertex of the quadrilateral

Constraint Satisfaction

A few comments about the constraint satisfaction process are now in order. The user described
how QTheorem should behave in terms of the midpoint constraint and the various merges, but
not by writing separate methods for moving each part of QTheorem. The midpoint constraint
(as defined by an experienced user) describes methods that can be invoked to satisfy itself.
Three such methods were specified: the first asks the midpoint to move to halfway between the
line’s endpoints; the second asks one of the line’s endpoints to move; and the third asks the
other endpoint to move. It was up to QTheorem to decide which of these methods to invoke,
and when and in what order to use them. A number of techniques for doing this have been
built into the system, as will be described in Chapter S.

In general, the constraints on an object might specify its behavior incompletely or redundantly,
or they might be unsatisfiable. QTheorem, for example, is underconstrained. The behavior we
observed was only one way of moving the vertex while satisfying the constraints. Two other
possibilities would have been for the entire object to move, or for the midpoints to remain fixed
while the other vertices moved. Neither of these responses would have been as pleasing to us

as human observers. [If we had wanted the entire object to move, we would have specified move QTheorem

SOME SCENARIOS 21

instead] Therefore, besides the more mathematical techniques for finding some way of satisfying
its constraints, or for deciding that they are unsatisfiable, an object can also take the user’s
preferences into account in deciding its behavior. In this case, the midpoint constraint specified
that the midpoint was to be moved in preference to one of the endpoints of the line.

We might override this information by anchoring the midpoints, as in Figure 2.13. [The anchor

symbol indicates a constraint that the anchored point may not be moved during constraint satisfaction.)

Anchar SHUCTUIE insery Anchor Anchat SHUCTue insery Anchor
ﬂmmﬁm_ m@mﬁ delete GeometnicObject A i dclete GeometricObject
eometrwObject | protocipe’s values Joonstrain Line UometigUbject | protatupe’s valuss fjeconscrain Line ‘

Line as save file merge MuiPointling ine as save file merge tMutPointline
MudPoiniline subclass templase ﬂp_ MuiPointtine subclass template mp_ W
Obfect e edit Toxt o Ater Objecte | edit text vuadriater

Point s v A ROCTANGRE Poing o s s A RO UANG

Figure 2.13 - A quadrilateral with anchored midpoints

Second Example - Constructing a Graphical Calculator

In this second example, we will construct some graphical programs for a simulated calculator.
It is interesting to note that the use of ThinglLab for this application was not anticipated -- all
the classes used here were designed only after the system had been running for some time.
However, there is a strong resemblance between the calculator parts and electrical circuit parts,
and Thinglab was designed to be able to simulate simple electrical circuits.

Some useful classes for building calculator programs have already been designed by an
is NumberNode. An instance of
NumberNode has two parts: a real number and a point. Its purpose is to provide a graphical
representation of a register in the calculator. Another class is NumberLead, consisting of a
number node and an attached line. As with leads on electrical components, it is used to
connect together parts of the calculator.

experienced user. One simple but important class

Using these building blocks, classes that represent the various arithmetic operations have been
defined. First, there is a general class NumberOperator. The parts of a NumberOperator are a
frame for displaying the operator’s symbol, and three number leads that terminate on the edges
of the frame. The frame and the nodes at the ends of the three number leads are all designated
as attachers. Four subclasses of NumberOperator are defined, namely Plus, Minus, Times, and
Divide.

22 SOME SCENARIOS

E'ouu STUCTUre insert Constant
FrintingConverter | Aelete Divide
Quadnifareral protatype’s valuwes fronseradn Line

Rectanale as save fie merge Minus
TemperatureConvergsubclass template fmove Numberteaa
TextThing Jrewmwommmmsem et [A &3 ¢4 NumberNode
Thermomerer | e e NumberQperator
Thermometers HumberPrinter
Times Plus

Trianate Point

Figure 2.14 - Picture of the prototype for Plus

Plus, for example, has three number leads with number nodes at the ends, which arc inherited
from NumberOperator. It has an added constraint that the number at the node on the right
always be the sum of the numbers of the leads on the left. The classes for Minus, Times, and
Divide prototypes have been defined analogously.

To view and edit a number at a node, the class NumberPrinter has been constructed. Its parts
are a number lead and an editable piece of text. Also, it has a constraint that the number at its
node correspond to that displayed in the text. If the node’s number changes, the text will be
updated; if the text is edited, the node’s number will be changed correspondingly. A special
kind of NumberPrinter is a Constant. For constants, the constraint is one way. The text may
be edited, thus changing the number; but the number may not be changed to alter the text.

Constructing a Centigrade to Fahrenheit Converter

Using these parts, let’s construct a Centigrade to Fahrenheit converter. After creating a new
class TemperatureConverter, we choose the prototype’s picture format for viewing and editing it.
Next, we select the word insert in the message pane, and the word Times in the tool pane. As
we move the cursor into the picture pane, a blinking picture of an instance of the class Times
appears. We position the frame that holds the multiplication symbol, and then the three nodes.
Following this, we insert a Plus operator in the same manner, connecting one of the nodes on
its left to the node of the times operator on the right. [The author has avoided the terms input and
output nodes in describing these operators, since, as shall be seen, information flow is not restricted in this way.]
Finally, we insert two instances of Constant, connecting them to the appropriate nodes of the
operators. We then invoke the edit fext message, and change the constants to 1.8 and 32.0.
The result is shown in Figure 2.15. [Incidentally, note the use of generic editing messages: the same insert

message is used to insert lines, arithmetic operators, and resistors; the edit fext message is used both to edit the

value of a constant and to edit a paragraph in a document]

SOME SCENARIOS

Flus v s e st s st a0 o S o s st s o s v S

Poine S INREE insert Constant

FrintmmgConverter mm]gm delete Divite
Quadrilateral proforype’s values Jeonstrain Line
Recanagle az save fie merge Minus

i subclass template [move Nurberiead
R E Ratnttantntetatatenten edit gext HumberNode

Themomerer e e e s s e | LD EPOPETATOR
Thermomerers NumberPrinter
Times Plus

Trinnale Poing

Figure 2.15 - Picture of the completed Centigrade to Fahrenheit Converter

Once the converter has been defined, we may use it as a part of other objects (ie., as a
subroutine). As an example of this, we define a new class PrintingConverter. We add an
instance of TemperatureConverter as a part, and also two instances of NumberPrinter to display
the Centigrade and Fahrenheit temperatures (Figure 2.16). If we edit the Centigrade
temperature, the PrintingConverter will satisfy its constraints by updating the numbers at its
nodes, and the Fahrenheit temperature displayed in the frame on the right.

Plus e s s s s e s e o s s e e med NUUITIDE T NO AR

Foine ST T insery NumberOperator

muw i Aelere NumberPrinter

bdrilaers prototype’s walues Joonstrain Plus

Rectangle as save file merge Point

Temperature Convergsubclass template Jmove Rectangie

TextThing e o o e s e edit textc Te fature Convery

Thermonmieter | e e TextThing

Thermometers Thermometer

Times Times

Trianae | b e -]
100.0

Figure 2.16 - A PrintingConverter

However, because of the multi-way nature of the constraints, the device works backwards as
well as forwards! Thus, we can edit the Fahrenheit temperature, and the Centigrade
temperature will be updated correspondingly (Figure 2.17). This demonstrates the need for the
special class Constant -- without it, the system could equally well have satisfied the constraints
by changing one of these coefficients rather than the temperatures.

23

24 SOME SCENARIOS
Flus - e s o asess aaane i v v s e e wone se - MU E THOAS Flus - [e e s [e
Point SR U insert NumberQperator Fong Bt insert HumberOperator
prototype’s picture | BRI Nurnberfrincer delere HumberPrinter
b driarend protatype’s tlues fronstrain, Plus iadrilarera profotype’s values fronstrain Plis
Rectangle a5 save fue merage Fotng Recrangle as save fie merae Paing
Ternpetature Convergsubclass template finowe Rectanagle TemperatureConvergsubclass template fnon Rectanqe -
TextThing e e o o e o e e | ! Temperaoue o JTextThing feewms o o s Te T ffue Corse
Thermaonieter s e = o st St 0 i Thermomerer | e
Thetmemerers ETTNOMETET Thermometers WTTOTNETET
Tunes Times Tunss Times
Triangl: s v e oo | TTUANGNR : e o e st it Y s st
Agatn
copy
cur
Paste
Anit

unxo
cancel
align

Figure 2.17 - Editing the Fahrenheit temperature

We may also connect the converter to other types of input-output devices, for example, a
simulated thermometer. We find an experienced Thinglab user, and ask her to define a
Thermometer class for us. A thermometer has a number lead for connecting it with other
devices, and a constraint that the height of the mercury be proportional to the number at its
node. We then build another class in analogy with PrintingConverter, and again use an
instance of TemperatureConverter as one of its parts. This time, however, we hook up the
converter to instances of class Thermometer. When the construction is complete, we can select
move and Point, and grab either of the columns of mercury with the cursor. When we move
one of the columns up or down, the other column moves correspondingly (Figure 2.18).

Poine B e —— T X At T Fotng L - MumberMNode
PrinungConverter [sructure insert NumberQperator PrintingConverter fsurucnwe HumberQperator
Quadribare ral i Aelete NumberPringer Quadrilaterad i Numberfrinter
Rectangle PROCOTYPY '3 DAUES [ronstrain Plus Rectangle Prorotype’s values Plus
TemperatureConvergas save fue merae FIEF TempefatureConverdas save file meras \Enm—
TextThing subclass tempiate {eCtangle TextThina subclass template @_ ectangle
TR IO EET | o s s o o s o ALt 1exe TemperatureConvery | Themome tar v s s o o s v s edie texe TempetatureConvery
uuuuuuuuuuuu Textr hmg S M B Bk 4080 Pt NN A 410

s Thenmometer s
Trangle Times Trianale
VanriableHe ighe Texe VarableHeighe Texe

Figure 2.18 - The temperature converter with thermometers for input and output

SOME SCENARIOS 25

Solving a Quadratic Equation

After experimenting with the converter, we might try building a more complex device, such as
the network for solving quadratic equations shown in Figure 2.19.

Mumbertead i R e B pp————
NumberNode SUUCEME insery Constant
NumberCperator h delere Divtde
Humberfrinter prototype’s palues — jeonstradn Line
MHumberWire as save fie merge Minus
Qbjecr subclass template | move Numberlead
Plus e e edit rext Mumberiode
Fointe e e HumberQperator
Frintnalonverter NumberPrinter
Pus
Al e 1 Poine

Figure 2.19 - A quadratic equation network

When we edit any of the constants, the value in the frame on the left will change to satisfy the
equation. In the picture, the coefficients of the equation X2 — 6X + 9 = 0 have been entered,
and a solution X = 3 has been found. Unlike the temperature converter examples, in this case
the system was unable to find a one-pass ordering for solving the constraints, and has resorted
to the relaxation method. [Note that the graph structure has loops in it] Relaxation will converge to
one of the two roots of the equation, depending on the initial value of x.

Now let’s try changing the constant term ¢ from 9 to 10. This time, the system puts up an
error message, protesting that the constraints cannot be satisfied. Some simple algebra reveals
that the roots of this new equation are complex -- but the number nodes hold real numbers,
and so the system was unable to satisfy the constraints.

A better way of finding the roots of a quadratic equation is to use the standard solution to the
quadratic equation ax2 +bx +C =0, namely X = (-b + (b2 - 4(:&0)1/2) / 2a. The system
can be told about this canned formula by embodying it as a constraint. We find an expert
user, who constructs a class QuadraticSolver for us (Figure 2.20). The parts of an instance
of QuadraticSolver include four NumberNodes a, b, ¢, and x, and a constraint that
X =(-b + (bz - 461«0)1/2) / 2Q. [Since the class NumberNode doesn’t allow multiple values, in the
QuadraticSolver’s constraint one of the roots has been chosen arbitrarily as the value for x. A more general solution
would be to define a class MultipleRoots, and set up the constraint so that it determined both the number of roots
and their values.)

26 SOME SCENARIOS
MumberFrinter o o o o s st st 2] s s s e et s i, s s 3. e At s o s i s .
NumberWirg sfructure 0 e e e e st e o e e o e e
Chiect protatype's pleoure
Plus TAEE'S DS
Potne m
PrintingConverter Jsubc SW
onadrat.: 00 | e

uadnbifere
Rectaryle
Solved Quadratic

Tla5s NeWw Tl Tuadratic sower
subclassof: Object
fields: 'X A B C text'
declare: "' _J

Quadratic Solver prototype parts: 'X A B C texe's

Quadratic Solver pmtatype qu: X replace With:
NumberNade protorupe recopu.

QuadrancSolver protorype ficlds & A replace With:
NumberNode prototype recopy.

Quadratictolver prototupe fleld: 3B replace With:
NumberNode prototupe recopy.

QuadrancSoluer prototype field: & C replace With:
NumberNode prototype recopy.

QuadraticSolver prototype fleld: S texe replace With:
TextThing prototupe recopy.

Quadranic solver understands:
‘showpleture: windoe | origin
[super shouj.\h.‘-turc: window.
fext frame showpicrure: wndow.
ongut € text frame orwin.
wihdow asTurele place: X poine; gote: onain+(4000);
place: A poing; gofo: ongin+(3000);

Figure 2.20 - Constructing the class QuadraticSolver

We then insert an instance of QuadraticSolver into the network, merging its number nodes with
the appropriate existing nodes in the network (Figure 2.21). Now, the system can find a simple
one-pass ordering for satisfying the constraints, and doesn’t need to use relaxation.

Mumbertead e e T
NumberNode ST e insert Constant
NumberQperator mm delete Divide
NumberPrinter profotype’'s talwes joonstrain Line
NumberWire as save file merge Minus
Qbiect subclass template [move Numberlead
Plus e e edit text HumberNode
Point e s s s e s s e e | UMD TOPETALOT
Frinungi_onve ter NumberPrinter
Plus
U drln e rg Point

2
AX +BX+C=0

Figure 2.21 - The network after adding an instance of QuadraticSolver

In inserting an instance of QuadraticSolver to the network, we have added another view of the
constraints on x. In the sense that the permissible values of x are the same with or without it
(ignoring the multiple root problem), the new constraint doesn’t add any new information.
However, QuadraticSolver’s constraint is computationally better suited to finding the value of x.
This technique of introducing multiple redundant constraints on an object is an important way
of dealing with circularity.

B e e e e s S e |

SOME SCENARIOS 27

Beyond this thesis, one of directions of this research has been toward a complete programming
language organized around constraints. Such a language is proposed in Chapter 6. This
example gives some interesting glimpses of what such a language might be like.
QuadraticSolver could have been described by constructing a network, as with the original class
Quadratic, rather than having a specially-defined constraint. However, if one tries sketching the
network for QuadraticSolver, one will find that it is not very illuminating, and also takes up
much more space than the algebraic form. Even with the original network, the diagram is
much harder to understand than the written equation for people who know algebra. It would
be nice, therefore, to have a language in which, for example, the algebraic constraint
ax2 + bx + ¢ = 0 had the same semantics as the diagram.

More Examples

A Document with Constraints

Anchor STructure insert BarGraph
I delete Poine
Arora| profotype's values jeonscrain Rectangle
Beam as save fie merge TextThing
Chain subclass template |move 00 |eeememeem e
Chainlink Jem oo o s o v o] edit text
Constant | e
Constantlengthline
Divide
FixedBridge
Amalgamated Consolidated
Incorporated
Employmens Statistics
Widgit Manufacturing Division . . 900
Rapacious Sales Division 1300
long Division . . v v vve v 40
United PickPockRet 200
L2 2440
WMD

Figure 2.22 - A document with constraints

The example shown in Figure 2.22 demonstrates the use of constraints in describing a dynamic
document. The document consists of a number of paragraphs of text, and four instances of
BarGraph. Each instance of BarGraph has a constraint that relates the height of the bar to the
number displayed in a text field. In addition, the document as a whole has a constraint that the
sum of the numbers of employees in each division be equal to the total at the bottom.

We can edit one of the fields containing the number of employees in a division. When we
change the number of employees in United PickPocket from 200 to 800 and issue the accept
command, the sum will be updated, and the height of the corresponding bar will change
appropriately to satisfy all the constraints (Figure 2.23).

28

SOME SCENARIOS

Anchar STUCTUIE insert BarGraph
mm deiete Poing
Aror profotype’s values |constrain Rectangle
Beam as save fue merge lﬂll&l—
Chain subclass template fmove e e e oo]
ChainLink o s e o e
constant b e
Constantlengthline
Divide
Fixed Bridge

Widagie Manufaceuring Division . . 900
Rapdcious Sales Dwision 1300
Long Division . o« v e e v v v 40
United PickPocket 800

Total ceasan . 3040

Amalgamated Consolidated

Incorporated

Employment Statistics

Figure 2.23 - The document after editing the number of employees in United PickPocket

Also, we can pick up the top of one of the bars with the cursor. As we move it up or down,
the corresponding number and the total will change (Figure 2.24).

Anchor STTUCIUre insert BarGraph Anchor ST insery BarGraph |
i i eiete W Parthae o rotope s o T wn_

aror prototype’s values fconstrain ¢CIag aroraph profotype’s values jeonserain ectangle
Beam as save fie merge TextThing Beam as save fue merae TextThing
Chain subclass template | - ————————~ Chain subclass template || - ——————— 1
Chainlink e e s e s s s s s QAL LEXE Chainlink e s s s s s s s s QAAL LEXC
constant s o s e e s vt o s] ‘fConstant s s s o s S e s 4
constantLengthline onstantlengrhline
Divide Divide
FixedBridge FixedBridge

Amalgamated Consolidated Amalgamated Consolidated
Incorporated Incorporated

Widgir Manufacturing Division . .
Rapacigus Sales Division . . .

Long Division . . .

United PickPocRes . . .
Total

Employmene Statistics

Employment Statistics

Widgir Manufacturing Division . .
Rapdcious Sales Dwision v .«
LoNg DIDISION v v v e s ovvvnsnn
United PickPocket

Total

40
2060
4300

Figure 2.24 - Moving the top of a bar

B e e N SR]

SOME SCENARIOS 29

Layout Constraints

The previous example demonstrated the use of constraints on the contents of a document;
Figure 2.25 shows an example of a constraint on layout.

LA rarc [— o e e] [DUacIA T e - - I
Ouadrilateral ST insert Paint Suadrilateral SO insert P_
Rectanaie del Rectanale Recranale b delere ¢Cranale
Tempetature Zonver ; upe vlues foor TextThing r\m?unmrc% onvergprorathpe’s valtws —|ronserain TextThing
Te usmvm e file s s s s s o e e e | T CROT AN as save tde Merag s s s s o s o s o s
Thermometer § aum emplate Thermometer subclass template w
The rmiometers e o s ot it s ot adit fext TREIMOMBEETES [o s o s o s AL rene
Times e S s o e s o Times e
Trianals Trangic
Variab

A Document A Document

with Layout Constraints with Layout Constraints

The receanale surrounading this The recranale surrounding this paragraph i

paraqraph 1S constraned m e precisely constratmed 10 be precisely big cnough ™ hold . If

I‘m enough 1o hald it. If the paragraph the paragraph 15 edited, or if the wulth of the \

is ted, or if the width of the recranale 18 changed, the helght of the rectangle will

rectandle 15 changed, the hewght of the chana' (0 accorngdade the paraaraph,

rectanale wall fhunqc 1 accomodare

the paragraph.

Figure 2.25 - A document with layout constraints

The text object has a constraint that the height of the rectangle be such that the rectangle is
precisely big enough to hold the paragraph. If we change the width of the rectangle or edit the
paragraph, the rectangle’s height will adjust itself accordingly.

A Paned Window

The example in Figure 2.26 illustrates how the shape of a paned window, such as the one used
in the ThinglLab user interface, can be specified by constraints. The basic building block is the
class Rectangle. Using Rectangle, an experienced user has defined two new building blocks,
namely a class LeftRight and a class UpDown. The parts of an instance of LeftRight are a pair
of rectangles constrained to be side-by-side and of the same height; UpDown is defined
analogously. Using these classes in turn, instances of LeftRight and UpDown may be
connected together by merging the appropriate corners to form a paned window.

30

To change a corner of one of the panes, we may select move Point; to move a pane as a unit,
we may select move Rectangle. As we move the part, the other parts of the paned window will
adjust themselves to satisfy all their constraints (Figure 2.27).

SOME SCENARIOS

ConstantlenathLine
Civle

id Bridge
LefrRught
Line

Lot
Maanitude
MulFotnt
Minus
Humbertead

st IETT—
I el e

profotype’s values fronstrain

as save file merge
subclass template jmove
e o s o S s s s 2dit 1exs

Figure 2.26 - Building a paned window

CONSantLenathiling | - o v v

Divule
L

eed Brdae
LeftRight
Ling

Lowud
Magnitude
MudPont
Minus
Numberiead

ingern

procotype’s ‘pictiire | RAE
N i
e fil

IoYpe s talues
3 UF

=

1i3¢
L‘ELC wxt

LeftRight

ettt | [SUG

Load
Magnitude
MidFotns
Minus
Nuumbertead

oA BC M tANTLENAATALING | =

ight "['nvm-: i
rain CEtangle teaibrutge profotype’s taluss
C n a3 save fi

subclass template

Figure 2.27 - Moving the corner of a pane in a paned window

SOME SCENARIOS 31

Alternate Views of a Triangle

This example demonstrates some more things that can be done with multiple views in
ThinglLab. In Figures 2.28 and 2.29, a point is used to represent an refcrence to an object.
Various views can be connected to the object; as the object changes, the views are updated

correspondingly.

Pont < s e e [PO Fotng s e o e e e e POINE
R Rectangle Recrangic ‘insert’ Rectangle
fThing ? TaxtThing TexrThing i ‘delets TextThing
N ‘conserain’ Trianals Triaris prozatupe’s ‘consirain’ Trianale

]\(’!_'I'Vlv(hllp. - e e Two Tibangles as save file merge’ NwoTriangies

welass tempiage ['move Twovigws WOVICU'S subclass tempiate |'move TwoViews

VIS o v s e | VEAUE (X View View o o e e o e e e} VAL COXE View

I -
- TG
table of talucs | Pt] picture]

pieture |

Tnanje: an Obyect
Parts

poinel: 40614
poinez: 64®37

part3: a Line
poing: 18633
poine2: 64137

N

- parti: 4 line AN
N pownti: 18933 < .
— powne2: 40714 N -
pare2: a Line

Figure 2.28

Two views of a triangle

Figure 2.29

Two triangles connected by a scaling constraint

Pong e s o POATLE Foing o e s e e | POANE
Rectanits Ry ' P tanaw: Rectanale 'thsert’ Peotaruls
Toxt Thing ' TextThing 'delete’
Troirai: ‘constrain’ ruangle Trianal: X ‘constron’ ruugle
‘T ! TwoTriargles S Sa0¢ f ! e TwoTnangles
RCVISWS iy TwoViews WOVIeWs subclass template |'muove’ TwoViews
Vigw View View e e o o e View
I I | Pl 1 D
-~ e
- ‘ -
N /‘\ q
FER AN s
. copy L Q JA/ \\
N\ /] o \ h [/ AN
\ A pasre \ / ————
- dott L A
scaleby: scaleby: 2.5
N
cancel
aign

Figure 2.30 - Editing the scaling constraint

In Figure 2.29, two triangles are connected by a constraint that one triangle be 1.5 times as big

as the other. If we edit the text in the constraint description, making the scale factor 2.5, the
triangle on the right increases in size appropriately.

32

A Bridge

This example has been taken directly from Sketchpad [Sutherland 1963].

SOME SCENARIOS

For use in constructing

bridge simulations, a class Beam, a class Weight, and a class Anchor have been defined. The
beams have a constraint that they obey Hooke’s Law. Using these classes, we can construct a

simulation of a bridge. When we apply the weight, the beams extend and compress accordingly
(Figure 2.31). In this case the constraint satisfier couldn’t find a one-pass ordering for satisfying

these constraints, and so relaxation was used.

shortened. @ A positive number indicates an extension;

constant
C C‘ubﬂ‘n[u,nl“
Dtvtde

e
Load
Magnituds
MuiPotnt

STTUCIITE insert
delete
pmtnrum S paljconstrain
as sare file merge
subclass templimove
e I LU 7324

Ancnor

Beam
Load
Poing

ANy

19 —6.00
2 BU/T

hY
246 - > 58

¥°‘ U

4.93

F

/
A€

Y

Figure 2.31 - A bridge under load

[Each beam has displayed how much it has lengthened or

a negative number indicates a compression.]

e —————— L rmeLe e |

SOME SCENARIOS 33

An Electrical Circuit

A simulation of a simple electrical circuit will now be presented. To illustrate a typical set of
building blocks for a given domain, the basic classes used in constructing the circuit will be
shown. These classes have been defined by an experienced user of the system. Using these
classes, a less sophisticated user could then employ them in constructing a simulation such as
that shown here.

The building blocks used in the circuit are resistors, batteries, meters, and wires. Also, there are
two other kinds of objects used in connecting together the components of the circuit: nodes and
leads. A node is a connection point in the circuit; its parts include a voltage and a graphical
screen location. A lead is a terminal of one of the components such as a resistor or a meter,
and has as its parts a node and a current. To connect, say, two resistors together, the node
from the lead of the first resistor is merged with the node from the lead of the second.

Class ElectricalNode
Superclasses
ElectricalObject
Part Descriptions
voltage: a Voltage
currents: a Set
location: a Point
Constraints
currents sum = 0.0
fortachg current in: currents methodis$
[current ¢ 0.0 - (currents excluding: current) sum]
The parts of a node are a voltage, a set of currents flowing into that node, and a screen
location. The constraint is Kirchhoff’s law: it specifies that the sum of the currents into the
node be 0. The information under the constraint’s rule is a method for computing any one
of the currents, given the values of all the others.

Class Ground
Superclasses
ElectricalNode
Constraints
voltage = 0.0
voltage < 0.0
A ground is a kind of node whose voltage must be 0.

34 SOME SCENARIOS

Class Electricallead
Superclasses
ElectricalObject
Part Descriptions
node: an tlectricalNode
current: a Current
Constraints
node currents has: current
node currents insert: current
A lead represents one of the connecting wires of a component.

Class TwoleadedObject
Superclasses
ElectricalObject
Part Descriptions
lead1: an Electricallead
lead2: an Electricallead
Constraints
lead1 node current + lead2 node current = 0.0
lead1 node current < 0.0 - lead2 node current
lead2 node current <« 0.0 - lead! node current
This is an abstract superclass used in defining components with two leads. It has a
constraint that the current flowing out of one lead be equal and opposite to the current
flowing out of the other.

Class Resistor
Superclasses
TwoleadedObject
Part Descriptions
resistance: a Resistance
label: a TextThing
Constraints
(lead1 node voltage-lead2 node voltage) = (lead! current*resistance)
lead! node voltage <
lead2 node voltage + (lead! current*resistance)
lead2 node voltage «
leadi node voltage - (lead! current*resistance)
leadt current ¢
(lead1 node voltage-lead2 node voltage)/ resistance
resistance reference
resistance = label text asFloat
resistance < label text asFloat
label text ¢ resistance asString asParagraph

SOME SCENARIOS 35

In addition to the constraint inherited from TwoLeadedObject, a resistor has an Ohm’s law
constraint, and a constraint that its resistance correspond to the text in its label. In the
Ohm’s law constraint, resistance has been designated as reference only, so that the system
will have to satisfy the constraints by changing the voltages and currents in the circuit,
rather than by changing the values of the components.

Class Battery
Superclasses
TwoleadedObject
Part Descriptions
internalVoltage: a Voltage
label: a TextThing
Constraints
lead1 node voltage = (lead2 node voltage+internalVoltage)
lead1 node voltage < lead2 node voltage + internalVoltage
lead2 node voltage < lead! node voltage - internalVoltage
internalVoltage reference
internalVoltage = label text asfloat
internalVoltage < label text asFloat
label text ¢« internalVoltage asString asParagraph

Class Wire
Superclasses
TwoleadedObject
Constraints
lead1 node voltage = lead2 node voltage
lead! node voltage < lead2 node voltage
lead2 node voltage < lead! node voltage
A wire is itself a kind of two leaded object. Its constraint specifies that the wire be a
perfect conductor. [If it were important to represent the resistance of a real wire, this could be done using

an instance of Resistor instead.]

Class Ammeter
Superclasses
TwoleadedObject
Part Descriptions
reading: a TextThing
Constraints
lead1 node voltage = lead2 node voltage
lead! node voltage < lead2 node voltage
lead2 node voltage < lead1 node voltage
reading text = lead! current asText
reading text < lead1 current asText
lead1 current reference

36 SOME SCENARIOS

Class Voltmeter
Superclasses
TwoleadedObject
Part Descriptions
reading: a TextThing
Constraints
leadtl current = 0.0
lead1 current < 0.0
reading text = (lead1 node voltage - lead2 node voltage) asText
reading text < (lead1 node voltage - lead2 node voltage) asText
lead1 node voltage reference
lead2 node voltage reference
Both the class Ammeter and the class Voltmeter describe perfect meters. An instance of
Ammeter has no voltage drop across it; an instance of Voltmeter draws no current.

The pictures for these building blocks were defined by writing an appropriate Smalltalk method.
For example, the picture of a node is a dot if the number of currents in its set is three or more,
and otherwise nothing; the picture of a resistor is the usual symbol, along with an editable label
indicating its resistance.

Using the components, we may construct a voltage divider (Figure 2.32).

Nurnber

Property structure P ?Im—l

Rectandle 2lete ALter

Resistor prorotype’s values jconstrain Elecericaliecad

Set as save fie merge ElectncalNode

Stream subclass template jmove Sround

TextThing =~ |~ edit text Meter

TwaleadidObiece | e Resistor
‘ii_enelggesmors

joltmeter extThy

Wu"e Twnlca:l‘tgamject

~~~~~~~ YoltageDivider

Figure 2.32 - Building a voltage divider

The nodes at the ends of the leads of the components are designated as attachers by the class
TwoLeadedObject. Thus, when inserting the ammeter, the node at the end of each lead will try
to merge with an existing node in the circuit.




SOME SCENARIOS

Number O — S A - e - [NV I ——
Froperty Struceure insery Ammeter
Rectangle delere Battery
Resistor Profocype's balues  Jconscrain Electricallead
Set as save fue merge Electncall
Stream subclass remplate maoue Ground
TeaThing e Meter
TwoleadddObizer | e Resistar

tmerer woleadedUbyect
Wire VoltageDivider
wwwwwww Yolemeter

vle

Figure 2.33 - The completed voltage divider

37

After the circuit has been completed (Figure 2.33), we may change its parameters and observe
the results (Figure 2.34).

Number . s e e i s e s e s s e Nurnber et i o s s s s o s s
Property SEUCTUTE tnzer Ammeter Propertt STTUCIue insert Ammerer
Rectangle mmgm delete Bartery Rectang dciete Bastery

Reststor profatype's balues  |constrain Electricallead Resistor prorotupe’s valugs — |constrain Hectricall ead

Set as save fue merge ElectricalNode set as save fue merge ElecericalNode
Stream subclass template  fmove Ground Stream subclass template  jmave Ground
TextThing e e e o Meter TextThing = oo o Meter
TwaleadsdObisae | e Resisror TwateadidObiece  f e Resizior
coltmeter waleadedUbject tmeter woleadediyect
Wire VoltaaeOnviAer Wire VoltageDivider

o s P s ot s o Volemwter e o o o o o s Volemieter

-||0

again
copy
cut

paste
ot

‘“EEW
cancel
aln | 1,0 .

‘e
i

of 0075 .
amps

10.0

Figure 2.34 - Changing a resistance in the voltage divider

Again, in this case, the system was unable to satisfy the constraints in one pass, and has used
relaxation. A discussion of constraint satisfaction for this example, and another example of the
use of multiple views to eliminate the need for relaxation, may be found in Chapter 5.




Chapter 3 - Objects

The Part-Whole Relationship

In Thinglab, an object is composed of named parts, each of which is in turn another object.
The parts are thus composed of subparts, and so on. The recursion stops with primitive objects
such as integers and strings. Consider a line:

Line
pointi: a Point
X: 350
y: 100
point2: a Point
X: 200
y: 200.

The line is composed of two parts that are its endpoints. Each endpoint is in turn composed of
an x and a y value; these are primitive objects (integers). An object will sometimes be referred
to as the owner of its parts. For example, the above line owns its endpoints.

A primitive object has no parts of its own. In Thinglab, integers, real numbers, and text are
taken to be primitive.

Part Descriptions

A PartDescription is an object that describes the common properties of the corresponding parts
of all instances of a class. Every class has a list of part descriptions, one for each part owned by
its instances. The following things are associated with each part description:
name - an identifier.
constraints - the set of constraints that apply to the corresponding part of each instance.
merges - the set of merges that apply to the corresponding part of each instance.
class - the class of the corresponding part of each instance. This is more restrictive than
Smalltalk, in which the class of the contents of an instance field is not declared.
Imposing this restriction makes the job of constraint satisfaction easier [see Chapter 5].

For example, the class Line has two part descriptions that describe the parts of each instance of
Line. The first part description has the name pointl. It has no constraints or merges, and
specifies that the pointl part of each line be an instance of class Point. The other part
description is defined analogously. For a class that specifies some constraints, for example the
class HorizontalLine, the pointl part description would also indicate that there was a constraint
that applied to the pointl part of each of its instances.




OBIJECTS 39

When a part description is added to a class, it automatically compiles messages in the class’s
message dictionary to read and write the part.

A subclass of PartDescription is SuperclassDescription. Instances of this subclass are used to
describe parts that represent superclasses. [See the section on Inheritance later in this chapter for more
details.]

Insides and Outsides

One of the important features of Smalltalk is its sharp distinction between the inside and the
outside of an object. The internal aspects of an object are its class, and its instance fields and
their contents; its external aspects are the messages that it understands and its responses. Since
other parts of the system and the user interact with the object by sending and receiving
messages, they need not know about its internal representation. This makes it easier to
construct modular systems. For example, the class Rectangle defines the message center. It
makes no difference to the user of this message whether a rectangle actually has a center stored
as one of its instance fields, or whether the center is computed on demand -- in fact, it is
computed on demand. [This is also related to work on data abstraction mechanisms in languages such as CLU
and Alphard (Liskov er al 1977; Wulf, London & Shaw 1976.))

In ThingLab, the notion of having a part has implications for both the internal and external
aspects of the object that owns the part. In the current implementation, internally the object
must have an instance field in which the part is stored, as well as a corresponding part
description in its class; externally, the object should understand messages to read and write the
part. However, these internal and external aspects are separate. A virtual part, as proposed in
Chapter 6, is an example of the use of this separation. Such a part has all the external
manifestations of a part, i.e., messages to read and write it. Internally, however, there is no
corresponding field; rather, the part is computed as needed. [Smalltalk already has virtual parts; the
proposed mechanism would add the necessary declarative superstructure so that the constraint satisfaction mechanism

could know about them.]

Paths

A path is a ThingLab object that represents a symbolic reference to a subpart. Each path
consists of a list of part names that indicate a way to get from some object to one of its
subparts. The path itself doesn’t own a pointer to the object to which it is applied; this must be
supplied by the user of the path. Thus the same path can be used to refer to the corresponding
subpart of many different objects. For example, point1 X is a path to get to the x value of the
first endpoint of any line. [To get to this value, the path first sends the message point/ to the line, and then
sends the message x to the result] A full path is a path that starts from the global symbol table,
while a relative path is one that starts from some intermediate owner (not necessarily the global
symbol table). In the latter case, the starting point is provided by the context in which the path




40 OBJECTS

is used; see Chapters 4 and 5 for examples.

While the definition of a path is simple, the idea behind it has proven quite powerful. As
mentioned above, Smalltalk draws a distinction between the inside and the outside of an object.
The notion of a path helps strengthen this distinction by providing a protected way for an
object to provide external references to its parts and subparts. For example, if a triangle wishes
to allow another object to refer to one of its vertices, it does so by handing back a path such as
Side2 pointi1, rather than by providing a direct pointer to the vertex. If this other object
wants to change the location of the vertex, it must do so by routing the request through the
triangle, rather than by simply making the change itself. This allows the triangle to decide
whether or not to accept the change; if it does accept it, it knows what has been altered, so that
it can update its other parts as necessary to satisfy all its constraints.

In addition to these semantic considerations, a major pragmatic benefit of this discipline is that
no backpointers are needed. [If the triangle did hand out a direct pointer to its vertex, the vertex would need
a pointer back to the triangle so that it could inform the triangle when it changed] Access to parts is
somewhat slower using this technique, since each access involves following a path. However, an
access via a path can often be moved out of the inner loops by the constraint compiler.
Another pragmatic consideration is that constraints and merges can be represented symbolically
using paths, so that they apply to all instances of a class, rather than to a particular instance.
This allows the system to compile constraint satisfaction plans in the form of standard Smalltalk
methods.

The constraint satisfaction techniques to be described in Chapter § all depend on noticing when
one constraint interferes with another. Paths are used to specify which parts or subparts of an
object are affected by the constraint. Two paths overlap if one can be produced from the other
by adding 0 or more names to the end of the other’s list. The following paths overlap the path
sidel pointi:

sidel point1 x

side1 point1

side1

(the empty path)
The following paths do not overlap Sidel pointi:

side! point2

side2
To test if two constraints interfere, the system checks if any of their paths overlap.

External References

The class PartDescription is actually a subclass of FieldDescription, which is an abstract class
intended to capture the notion of a description of instance fields in general. Two other




OBJECTS 41

subclasses of FieldDescription have been defined for use in describing external references, that
is, references from an object to something other than one of its own parts. External references
come in two flavors: absolute and relative. The behavior of these two kinds of references is
different with respect to copying. If a copy of an object is made and used as a part of another
object, all absolute references will remain unchanged in the copy. On the other hand, all
relative references will be changed to refer to the corresponding part of the new owner of the
copy. For example, an absolute reference might be used to represent a footnote in a document
A that refers to a section in another document B. If A is copied, the footnote in the copy will
still refer to the same section in B. On the other hand, a relative reference should be used to
represent a reference from one section of A4 to another section of the same document. If A4
were copied, the relative reference would indicate the corresponding section of the copy.

For pragmatic reasons, external references are represented as full paths, rather than direct
pointers. This avoids circular structures, and makes it easy to find all the constraints that affect
the referenced object.

Inheritance

As described in Chapter 1, a new class may be defined as a subclass of one or more existing
classes. The subclass inherits the part descriptions, constraints, merges, and message protocol of
its superclasses. It may add new information of its own, and it may override inherited
responses to messages. Every class (except class Object) must be a subclass of at least one other
class.

The superclasses of an object are represented by including an instance of each superclass as a
part of the object. The field descriptions for such parts will be instances of
SuperclassDescription, rather than PartDescription. These parts may have constraints and
merges applied to them in the usual way. The only difference between these instances of
superclasses and ordinary parts is that messages will be forwarded to them automatically (see
below). [The actual implementation is a bit more arcane - see the section Implementation of Superclasses.

However, the effect is as described, and the reader should think of it in this way.]

Class Object

The most general class in both Smalltalk and Thinglab is class Object. As part of the
ThingLab kernel, a large number of methods have been added to this class. These methods
provide defaults for adding or deleting parts, merging parts, satisfying constraints, showing in a
ThingLab window, and so on. In general, these methods treat an object as the sum of its parts.
For example, to show itself, an object asks each of its parts to show; to move itself by some
increment, the object asks each of its parts to move by that increment. This strict hierarchy is,
however, modified by the object’s constraints and merges. Thus, when an object decides exactly




42 OBJECTS

how to move, it must watch out for overlap between its parts due to merges, and must also
keep all its constraints satisfied. [See Chapter 5 for an example]

Message Behavior

Inheritance is relatively simple for a class with only one superclass. However, the situation is
more complex when multiple superclasses are present: how should the system act in the
presence of conflicting inherited information? To help choose among conflicting information,
one of the superclasses of a class must be designated as its primary superclass.

When an object receives a message, it first checks the message dictionary of its own class. If a
corresponding method is found, that method is used. If not, it checks the dictionary of its
primary superclass, and then the primary superclass of that superclass, and so on. If the
message is not understood by any of the primary superclasses, the object then checks all of its
other superclasses to see if any of them understand the message. If there is no method, or if
there are several conflicting inherited methods, the user is notified. If there is a single method
defined for that message, then that method is used. To avoid this search the next time the
message is received, the class automatically compiles a message forwarder that will intercept that
message in the future and send it directly to the appropriate superclass part. If the message
protocol of a class is changed, its subclasses should be notified so that they can delete obsolete
message forwarders; this is not done in the current implementation.

If the user wants to choose among conflicting messages, or to combine them somehow, an
appropriate method for doing this should be defined in the class or one of its primary
superclasses. An example of the use of this technique is in the default method for showing an
object’s picture. This default method (defined in class Object) yields a picture that combines all
inherited pictures and the pictures of the object’s own parts. It simply specifies that each of the
object’s parts should be asked to show itself (irrespective of whether or not the parts represent
multiple superclasses).

In previous versions of Thingl.ab, the problem of conflicting inherited methods was handled in
the following way. Methods were themselves objects that understood a variety of messages. If
several conflicting methods were found for a given message, the inherited methods were asked
to negotiate among themselves to come up with the method to be used to receive the message.
These negotiations were relatively unsophisticated. If the methods were all the same, then any
one of them would be used. Some methods, called default methods, would always defer to
others, while other methods, such as those for depicting an object, would make a new method
that invoked all the inherited methods. If negotiation failed, the user would be asked to supply
the desired method. Once a method had been constructed or entered, it was saved in case it
was required again. This technique worked reasonably well; the only reason that it is not in the
current system is that the author never got around to re-implementing it.




OBJECTS 43

As an example of the use of multiple superclasses, suppose one has available the class Triangle,
and two subclasses of it: a class IsoscelesTriangle; and another class HorizontalTriangle, the
class of triangles with horizontal bases.

Class Triangle

Superclasses
GeometricObject

Part Descriptions
sidel: a Line
side2: a Line
side3: a Line

Merges
side1 pointi
side: point2
side2 point2

side3 pointi
side2 point1
side3 point2

Class IsoscelesTriangle
Superclasses
Triangle
Constraints
sidel length = side2 length

Class HorizontalTriangle
Superclasses
Triangle
Constraints
side3 point1 y = side3 point2 y

Given the above classes of triangles, suppose one wishes to define a new class of isosceles
horizontal triangles. This can be done as follows:

Class IsoscelesHorizontal Triangle
Superclasses
T: Triangle (primary superclass)
IT: IsoscelesTriangle
HT: HorizontalTriangle
Merges
T=IT =HT

If a different correspondence between the parts of the superclasses is dcsired, it can be
represented by an expanded set of merges, e.g.




Merges
T sidel pointi
T side2 pointi
T side3 point2

IT sidel pointi
IT side2 pointi
IT side3 point2

HT side2 pointi
HT side3 point2
HT sidel pointi

The use of this scheme yields a reasonable structure and behavior for the new class. The new
class has all the constraints and merges of each of its superclasses. The inherited parts are all
available in the new class; overlaps are represented by merges. The use of a primary superclass
need not introduce an unwanted asymmetry: rather than designating either IsoscelesTriangle or
HorizontalTriangle as the primary superclass, Triangle itself was so used. Note that having
several inherited parts with the same name is not a problem, as one can always indicate which
part is meant by prefixing the message with the name of the appropriate superclass part.

Semantically, the close relationship in this scheme between the class-subclass relation and the
part-whole relation is interesting. While the scheme is fairly simple, it was arrived at only after
much discussion, head-scratching, and implementation of silly ideas. Also, given the author’s
past experience, it probably has some as yet undiscovered deficiencies.

Use of Multiple Superclasses for Multiple Representation

Multiple superclasses also provide a way of implementing multiple representations of objects.
For example, suppose the user desires to represent a point in both Cartesian and polar forms.
This may be done as follows:

Class CartesianPoint
Superclasses
GeometricObject
Part Descriptions
X: a Real
y: a Real

Class PolarPoint
Superclasses
GeometricObject
Part Descriptions
r: a Real
theta: a Real




OBIECTS 45

Class MultiplyRepresentedPoint
Superclasses
G: GeometricObject (primary superclass)
C: CartesianPoint
P: PolarPoint
Constraints
C = P asCartesian
C « P asCartesian
P « C asPolar

The constraint makes use of two auxiliary messages to CartesianPoint and PolarPoint.
Class PolarPoint
Methods
asCartesian
[nCartesianPoint new x: r* theta cos y: r*theta sin]
Class CartesianPoint
Methods
asPolar | dist angle
[dist ¢« ((x*x) + (y*y)) sqrt.
angle ¢ [x#0.0s[(y/x) arctan]
Yy=0.05[0.0] y<0.0s[-pi/2.0] pi/2.0).
NPolarPoint new r: dist theta: angle]
These methods in turn make use of the messages Sin, cos, arctan, and sSqrt to real numbers
(methods not listed).

Implementation of Multiple Superclasses

For pragmatic reasons, multiple superclasses have been implemented so as to take advantage of
the efficient Smalltalk subclassing mechanism. Superclasses other than the primary one are
implemented as described. However, the primary superclass is represented as a standard
Smalltalk superclass. Thus, for this superclass, the structure has been flattened. Rather than
having an instance of its primary superclass as a part, the subclass has the parts of its primary
superclass as its own parts. For example, the instance fields of the class
IsoscelesHorizontalTriangle would actually be as follows:

field 1 - a Line (the sidel from Triangle)

field 2 - a Line (the side2 from Triangle)

field 3 - a Line (the side3 from Triangle)

field 4 - an IsoscelesTriangle

field 5 - a HorizontalTriangle




46 OBIJECTS

Prototypes

For a given class, a prototype is a distinguished instance that owns default or typical parts. All
classes understand the message prototype, and respond by returning their prototypical instance.
If the user doesn’t specify otherwise, the prototype has nil in each of its instance fields.
However, if the user has defined the class by example, the prototype will-hold the particular
values from the example. These values may also be set by writing an initialization message.

Prototypes provide a convenient mechanism for specifying default instance values. Thus, in the
introductory example, when a new line was being inserted into the quadrilateral, its initial
length and orientation were copied from the prototype Line. Such defaults are essential in
graphical editing, since every object needs some appearance.

More importantly, a prototype serves as a representative of its class. ThingLab distinguishes
between messages that have no side effects for the receiver (read-only messages), messages that
alter the values stored in the receiver, and messages that alter the receiver’s structure. Any
instance will accept read-only or value-altering messages, but only prototypes will accept
structure-altering messages. This is because this latter type of message affects the class. The
prototype is in charge of its class, and is willing to alter it, but for instances other than the
prototypical one, the class is read-only. Requests to move a side of a polygon, or even turn it
inside out, are examples of value-altering messages. On the other hand, requests to add or
delete a side, edit a constraint, or merge two points are structure-altering messages.

On occasion, the user might want to alter the structure of an instance that is not a prototype.
To do this, the user should first send it the message asProfotype, and then send the structure-
altering message to the result. When an object receives the message asPrototype, if it isn’t
already a prototype, it makes a new subclass of its current class, moves its instance values into
the fields of the prototype for this subclass, and returns that prototype.

Defining Classes by Example

When the user defines a class by example, the editing messages are always sent to the
prototype, rather than sometimes to the class and sometimes to one of its instances. The
prototype takes care of separating the generic information that applies to all instances of its class
from the specific information that applies only to the default values that it holds in its ficlds.
With its class it associates the number and class of the parts, the constraints, and the merges.
With its own instance fields it associates the default values for its parts.

It is not possible to define all classes by example; some, such as classes for new constraint types
and abstract classes like GeometricObject, must be entered by writing an appropriate Smalltalk
class definition. One can also use a combination of definition by example and hand coding.




OBJECTS 47

In general, there are many possible classes that could be abstracted from a given example;
which one should be abstracted will depend on the user’s purposes. The Thinglab facility for
definition by example provides a reasonable default, but is not a general solution to this
problem. If the user wants some other sort of class, he or she should write an appropriate
definition.

This facility could, however, be generalized to allow several kinds of choices as to how the class
definition should be abstracted. First, the prototype could decide whether some aspect of itself,
e.g. a constraint, should be a property of it alone, or of its class in general. This kind of choice
does not arise in the current representation, since e.g. constraints can only be associated with
classes and not particular instances; but if the representation were extended such decisions
would need to be made. Also, the prototype could recognize some configuration of its parts as
being an instance of an already defined class. In the current system, this is done only for
merges -- in the user interface, if the user positions one object near another, an instance of a
merge will be constructed automatically. However, the system could be extended so that
various classes were waiting to recognize instances of themselves. For example, the class
HorizontalLine might notice that the line just drawn by the user was in fact horizontal, or the
class SeriesResistors might notice that a pair of resistors formed an instance of itself.

Dynamic Updating

If a class is edited, this change will affect all of its instances. After the edit has been made, all
these objects should be notified of the change so that they can update themselves if necessary.
This problem is not handled completely in the current implementation: presently, only the
prototype is notified; the other affected instances first notice the change the next time they
reference the class.

Dynamic updating is a knotty problem in general. One such problem arises in connection with
the mixture of the generic and the particular. For example, suppose that the prototype for the
class Widget is edited by the insertion of an additional line. Each other instance of Widget
should also have a line added. Sometimes Widget’s constraints will completely determine the
new line’s location; but this will not always be the case. If not, what should be the line’s
location? The particular location used for the prototype may not be apprqpriate, since the parts
of the other instances may be positioned quite differently.

Limitations of the ThingLab Hierarchies

One of the main deficiencies of both the part-whole and inheritance hierarchies as presently
implemented is that they both are useful for describing additive sorts of knowledge only; with
the exception of overriding inherited message responses, the hierarchies do not have any
mechanisms for masking off, modifying, or replacing information. For example, an object




48 OBIJECTS

ought to be able to mask off an inherited constraint, or to replace an inherited constraint with
another. More generally, there should be a way of defining all sorts of "parasitic" objects, that
can be merged with a given object to change it in some specified way. For example, one
should be able to define a class LineDotter. Any class that was a subclass of LineDotter would
have all its inherited lines made into dotted lines. Thus, a subclass of Triangle and LineDotter
would have dotted lines for its sides.

A Comparison with KRL

The representation language KRL [Bobrow & Winograd 1977a, Bobrow & Winograd 1977b] is another
system that uses an object-oriented representation scheme, and it is interesting to compare the
approach used in KRL with that used in ThingLab in the areas of overlap. In this section,
KRL definitions for the various classes of triangles described above will be presented as a
framework for making some comparisons. The intended domain of KRL is much broader than
that of ThingLab, and there are hooks for many more kinds of features built into it. Also,
KRL is much less "automatic” than Thinglab. For example, KRL has no constraint
mechanism. A programmer who wants some relation to be satisfied must write procedures to
satisfy it, and must make sure that the procedures are invoked at the proper times.

In KRL, knowledge is organized around entities called units. Each unit has a unique name,
and has one or more named slofs containing descriptions of other units associated with the
given unit. Every unit has a distinguished slot named self; the descriptions in this slot apply to
the unit as a whole. The KRL analog of a class is a unit with the particular values left
undefined. Such a unit is called a prototype in KRL -- note that this is not the same as a
ThingLab prototype. Inheritance relations may be described using the self slot. For example,
to describe the prototype EquilateralTriangle as being a kind of Triangle and also a kind of
RegularPolygon, its self slot would include the descriptions "a Triangle" and "a
RegularPolygon". To provide for simple inheritance of slots and attached procedures from one
parent, a prototype optionally may be described as a further specif-cation of a single other

prototype. This is similar to the primary superclass notion in ThingLab.

The KRL analog of an instance is a unit that typically has inherited slots that are filled in with
specific information, but no additional slots of its own. For example, a line instance would
have the description "a Line" in its self slot, perhaps with specific values for its endpoints, but
would have no slots beyond those inherited from Line.

An important difference between a KRL prototype and a ThinglLab or Smalltalk class is that a
KRL prototype and an instance of it are basically the same kind of object: the only difference
built into the language is that one has more information filled in than the other. [Of course, a
KRL user may choose to frear them differently] On the other hand, a Smalltalk class and an instance
of it are fundamentally different: a class has the message protocol and local storage defined by




57 s R

OBJECTS 49

class Class; while an instance has the message protocol and local storage defined by its own
class. For example, suppose one has a KRL prototype for Line that corresponds to the
Smalltalk class Line. In KRL, one could find the description of an endpoint of a Line instance
(this might be an explicitly stored point); in the same way, one could find the description of an
endpoint of the prototype Line (this would be simply "a Point"). In Smalltalk, an instance of
class Line will respond to the message pointl by returning its first endpoint; but class Line itself
won’t understand this message at all. On the other hand, the Smalltalk class Line understands
messages like howMany (how many instances of Line are there?), while this would be a
somewhat odd thing to ask a KRL prototype, since it is asking for information about the set of
all lines rather than the prototypical line.

There seem to be both advantages and disadvantages for each of these representations for
generic concepts, but other language features reduce their importance. ThingLab prototypes can
represent a typical instance of a class in the same way that a KRL prototype can represent a
stereotypical individual. On the other hand, the KRL meta-description facility gives it the
power to talk about all instances of a prototype, just as a Smalltalk class talks about all its
instances rather than being a typical instance. KRL does have the significant advantage that an
instance may be represented as a further description of several other prototypes. This generality
is not cheap.

Turning to the example, we might describe a triangle prototype in KRL as follows:

# Triangle
self: A GeometricObject
sidel: A Line with
pointl = The pointl from a Line thatls My side3
point2 = The pointl from a Line thatls My side2
side2: A Line with
pointl = The point2 from a Line thatls My sidel
point2 = The point2 from a Line thatls My side3
side3: A Line with
pointl = The pointl from a Line thatls My sidel
point2 = The point2 from a Line thatls My side2.

The triangle is a kind of geometric object, as indicated by the description in its self'slot. The
part-whole hierarchy used in Thinglab can be represented in KRL using other named slots.
Note that the descriptions of the line’s endpoints are redundant. Such redundancy is allowed,
even encouraged, in KRL. There are also other ways in which the triangle could be described,
e.g. by including additional slots for its vertices. The contents of a KRL slot are a set of
descriptions of another entity, not necessarily a direct pointer to that entity. This allows partial
knowledge about an entity to be represented, which is not generally possible in ThingLab.




50 OBIJECTS

Given a Triangle unit, units for IsoscelesTriangle and HorizontalTriangle may be defined.

# IsoscelesTriangle'l 1: FurtherSpecified (\Triangle)

self: A Triangle
A ConstrainedObject with
ConstraintRule =

. . : i \Tri
# HorlzontalTnangleT1 1 FurtherSpecified (\Triangle)

self: A Triangle
A ConstrainedObject with
ConstraintRule =

Since there is no constraint mechanism built into KRL, a unit for ConstrainedObject has been
posited. Note that these triangles have been described in ter:ns of two other units (c.f. multiple
superclasses). As a result of being declared as further specifications of Triangle, they will
automatically inherit slots and procedures from that unit.

Finally, IsoscelesHorizontalTriangle can be described using the two preceding definitions.

# IsoscelesHorizontalTriangle
self:  An IsoscelesTriangle
A HorizontalTriangle

The multiple description facility of KRL provides a convenient way of handling the multiple
superclass problem. In this definition, no correspondence between the sides of the
IsoscelesTriangle and the HorizontalTriangle has been declared. In this case, the KRL matcher
will form this correspondence when the program tries to access one of the sides. However, one
could declare the correspondence in advance with suitable additional descriptions. This is in
contrast to Thinglab, in which the correspondence is always part of the static instance structure.
Again, the flexibility of KRL is expensive, in that a fairly complex reasoning process will be
invoked for every access to a part of the horizontal isosceles triangle. In ThingLab, on the
other hand, such run-time access is quite cheap.

Other Representations of ThingLab Objects

The current representation scheme is not the only one that has been used in Thinglab. In
earlier versions, Thinglab objects were simulated in Smalltalk, rather than being represented
directly as Smalltalk objects as at present. In these earlier versions, there was a single Smalltalk
class Thing; all ThinglLab objects were represented as instances of this class. Thinglab message
sending and inheritance were simulated as well. [These versions were written first in Smalltalk-72 and
then in Fastalk, neither of which supported subclasses] The simulated instances were somewhat more




e |

OBJECTS 51

complex than Smalltalk instances, in that each had its own sets of constraints, merges,
backpointers to owners, and so on. Also, the results of constraint analysis were held in a data
structure that had to be interpreted each time the constraints needed to be satisfied. This
approach was quite useful, in that it was easy to try new representation schemes. Its speed was

glacial.

With the advent of Smalltalk-76, subclassing and a Smalltalk compiler became available. At
that time the author decided to try to use the Smalltalk representation directly (including the
use of existing Smalltalk classes such as Integer and Point), and also to compile ordinary
Smalltalk methods to hold the results of constraint satisfaction. To make this possible, ways had
to be found to move all the extra ThinglLab information that was stored in the simulated
instances into Smalltalk classes instead. This was accomplished with the use of paths, part
descriptions, the elimination of backpointers, and so on. Constraints and merges could be
associated with an entire class only, rather than a particular instance. [To do otherwise would require
that methods be associated with an instance, which is difficult in the current Smalltalk. This restriction is not always
what one would like. For example, in the current system one cannot represent the class Bridge in such a way that
the connectivity of a particular bridge is a property of the instance alone. Rather, a separate subclass is needed for
each kind of bridge structure.]

One result of all this is that the system is much faster -- once a method for satisfying the
constraints has been planned and compiled, the response time is usually as good as if a suitable
method had been hand-coded. [However, the time for planning a new method is still slow] A much
more important result is that this switch has forced the restructuring and refinement of the
constraint mechanism so that it can deal with Smalltalk directly, making it realistic to consider
organizing an entire programming language around constraints. See Chapter 6, Directions for
Future Research.




Chapter 4 - Constraints

Introduction

This chapter describes the representation of ThingLab constraints. To support constraints, some
new kinds of objects were implemented. In Smalltalk, objects communicate by sending and
receiving messages; an object’s response to a message is implemented by a method. In this
chapter, ThingLab objects are described that stand for Smalltalk messages and methods. The
purpose of this additional mechanism is to provide tools for reasoning about messages and
methods, and in particular about the interactions among messages and constraints.

Organizational note: this chapter discusses constraint representation; constraint satisfaction is
dealt with in Chapter 5. At the end of Chapter 5 are some remarks on constraints and the
procedural-declarative controversy.

Message Plans

A message plan is an abstraction of the Smalltalk notion of sending a message. A message plan
doesn’t stand for a particular act of sending a message; rather, it is a template for any number
of messages that might be sent. A message plan is itself an object -- an instance of class
MessagePlan. The parts of a message plan include a receiver, a path, an action, and 0 or more
arguments. The receiver is normally a pointer to some object, although for some uses it may be
nil, or may be a prototype representing any instance of a class of objects that might receive the
message. The path tells how to get to one of the receiver’s subparts, which will be called the
target of the message plan. The action is a selector for a Smalltalk method understood by the
target. The arguments may be either actual or symbolic. Actual arguments are pointers to
other objects; symbolic arguments are simply names (strings). The arguments correspond to the
arguments passed at run-time to the Smalltalk method invoked by the action. For example,
here is a message plan asking a triangle to move one of its vertices right by 10 screen dots:
triangle sidetl point2 moveby: 1000.

The receiver is triangle, the path is side1 point2, the action is moveby:, and the argument
is the point 1000.

An important use of message plans is to describe the methods for satisfying a constraint. If a
message plan is used in this way, the plan will have several Boolean flags and a pointer to the

constraint that generated it, in addition to the parts listed above. The flags are:
uniqueState - true if there is only one state of the target that will satisfy the constraint
(given that all other parts of the receiver are fixed). See the section Relations Among




e e ———— il |

CONSTRAINTS 53

the Parts of a Constraint.

referenceOnly - true if the action described by the message plan only references its target,
rather than alters it.

compileTimeOnly - true if the message plan is used only during constraint satisfaction
planning, and not in producing executable code.

Methods

In ThingLab, an explicit class Method has been defined. The parts of a method are a list of
keywords, a matching list of symbolic arguments, a list of temporaries, and a procedural body.
The selector for the method is constructed by concatenating the keywords. These parts are the
same as those of a Smalltalk method, the only difference being that in Smalltalk the method is
stored as text, and the parts must be found by parsing the text. One reason for defining an
explicit class in Thinglab was to simplify access to the parts of a method. This is useful
because methods are often generated by the system rather than being entered by the user, with
different parts of the method coming from different parts of the system. Also, some methods
have their own special properties. For example, all the methods that an object has for showing
itself are indexed in a table owned by the object’s class. [This table is used in generating the format
pane in the ThinglLab user interface] In some previous implementations of Thinglab, the idea of
methods as objects was used in the scheme for deciding how to receive a message when there
were conflicting inherited methods, as was described in Chapter 3.

After a Thinglab method has been constructed, it will usually be asked to add itself to some
class’s method dictionary. In the implementation, the method does this by constructing a piece
of text and handing it to the regular Smalltalk compiler. The Smalltalk compiler in turn
produces a byte-coded string for use at run-time, and indexes it in the class’s method dictionary.

Constraints

As described in Chapter 1, a constraint represents a relation among the parts of an object that
must always hold. Constraints are themselves objects. New kinds of constraints are defined by
specifying a rule, and a set of methods for satisfying the constraint. Adding or modifying a
constraint is a structural change, so only prototypes will accept new constraints or allow existing
ones to be edited. Constraints are indexed in several tables in the prototype’s class for easy
retrieval during constraint satisfaction.

The constraint’s methods describe alternate ways of satisfying the constraint; if any one of the
methods is invoked, the constraint will be satisfied. These methods are represented as a list of
instances of class Method. The constraint also has a matching list of instances of MessagePlan.
Each message plan specifies how to invoke the corresponding method, and describes its effects.




54 CONSTRAINTS

When the constraint satisfier decides that one of the methods will need to be invoked at run-
time, the message plan that represents that method is asked to generate code that will send the
appropriate Smalltalk message to activate the method. Exactly which methods are used will
depend on the other constraints, and the user’s preferences as to what should be done if the
object is underconstrained (see Chapter 5). [In some cases, rather than generating a call on ar already

compiled method, the message plan will expand the method in-line]

The rule is used to construct a procedural test for checking whether or not the constraint is
satisfied, and to construct an error expression that indicates how well the constraint is satisfied.
Both the test and the error expression are instances of class Mecthod. These methods are
constructed in a fairly simple-minded way. If the constraint is a numerical equation, the test
will check that the two sides of the equation are equal to within some tolerance; the error will
be the difference of the two sides of the equation. If the constraint is non-numerical, the rule
will be used directly to generate the test; the error will be 0 if the constraint is satisfied, and 1
if it is not. (See the examples below.) If the user wants to override these default methods, he
or she can replace them with hand-coded Smalltalk methods.

Examples of Constraints

Consider the structure described by the class HorizontalLine, a subclass of Line.
Class Line
Superclasses
GeometricObject
Part Descriptions
pointi: a Point
point2: a Point

Class Horizontalline
Superclasses
Line
Constraints
point1 y = point2 y
point1 y € point2 y
point2 y € pointi y
The class HorizontalLine has a constraint that the y values of the endpoints of each of its
instances be equal. The constraint has two ways of satisfying itself, as described by the two
methods listed under the rule.

For most methods, including those listed above, the user need provide only the body of the
method. The method’s selector is generated automatically, and a simple parser is used to
construct the corresponding message plan. Methods for a test and for an error expression are




e R SRR e e A

CONSTRAINTS 55

also generated by the constraint. All these methods compile code in the class that owns the
constraint, in this case HorizontalLine.
Class HorizontallLine
Methods

horiz-point1-y [point1 y< point2 y]

horiz—point2-y [point2 y< pointi y]

horiz-test [f1(line point1 y - line point2 y) abs < self tolerance]

horiz-error [filine point! y - line point2 y]
The first method is one of the ways of satisfying the constraint that was provided by the user.
There is a matching message plan for this method, indicating that it alters point1 y, and
uniquely determines the state of that subpart. The second method is analogous to the first.

The test returns true if the constraint is satisfied. The message tolerance that is invoked in the
test returns a number; for graphical objects, the default tolerance is 1 unit of resolution on the
graphic display. The error expression returns a number whose value is 0 if the constraint is
precisely satisfied. [The selectors for all of these methods are generated by the constraint. They all have the
prefix horiz (supplied by the user) to distinguish them from methods for other constraints that might be applied to

the class. In the method bodies, f} means “return a value"}

Another example is the midpoint constraint used in the introductory example in Chapter 1.
Class MidPointlLine

Superclasses
GeometricObject
Part Descriptions
line: a Line
midpoint: a Point
Constraints

(ling point1 + line point2) / 2 = midpoint
midpoint ¢« (line point1 + line point2) / 2
line point1 « line point2 + ((midpoint-line point2)*2)
line point2 ¢ line point1 + ((midpoint-line point1)*2)

There are three methods, one to alter the midpoint to satisfy the constraint, and the other two
to alter the line’s endpoints. As mentioned previously, the three methods represent alternate
ways of satisfying the constraint. The user may want one way to be used in preference to
another if there is a choice. This is indicated by the order of the methods -- if the system has a
choice about which method to use to satisfy the constraint, the first one on the list will be used.
In the case of the midpoint, the user preferred that the constraint be satisfied by moving the
midpoint rather than by moving an end of the line. [It would be better to represent this sort of meta-

constraint more explicitly -- see the section on Meta-Constraints that follows.]

The following Smalltalk methods are compiled in class MidPointLine:




56 CONSTRAINTS

Class MidPointlLine
Methods
inMiddle-midpoint [self midpoint< (line point1 + line point2) / 2]
inMiddle-line—point1 [line pointi <«
line point2 + ((midpoint-line point2)*2)]
inMiddle-line—point2 [line point2<
line point1t + ((Imidpoint-line point1)*2)]
inMiddle—test [N1((line point1 + line point2) / 2 - midpoint) abs
< self tolerance asPoint]
inMiddle—error [t(line point1 + line point2) / 2 - midpoint]

[Minor detail: the system has inserted sel/ in the first method so that midpoint« is a message to the instance of

MidPointLine, rather than being an assignment statement. See the section on Assignment Statements later in this

chapter.]

Besides altering parts of the owner, a constraint may merely reference some of its owner’s parts.
The referenced parts may not be changed to satisfy the constraint, thus allowing the
implementation of one-way constraints. For example, suppose the user wants a word to be the
result of concatenating a prefix and a stem. When either the prefix or the stem is changed, the
word should be updated; but changing the word cannot affect either the prefix or the stem. (If
someone sends a messsage trying to change the word without changing the prefix or stem, the
word will spring back to its old value.)
Class ConcatenationExample
Superclasses
Object
Part Descriptions
prefix: a String
stem: a String
word: a String
Constraints
word = (prefix concat: stem)
word < prefix concat: stem
prefix reference
stem reference
The following methods are compiled:
Class ConcatenationExample
Methods ,
concatenate-word [self word¢ prefix concat: stem]
concatenate—test [fword = (prefix concat: stem)]
concatenate—error [word = (prefix concat: stem) - [110.0] N11.0]




CONSTRAINTS 57

Only the first method has generated any executable code -- the other two are used only during
planning. The error will be simply 0 or 1, since either the word is correct or it isn’t.

Relations Among the Parts of a Constraint

The relations among the parts of a constraint are fairly rigidly defined. Each of the methods, if
invoked, must cause the constraint to be satisfied. For every part that is referenced by the rule,
there must be either a method that alters that part, or a dummy method referencing it.
Currently, it is up to the user to see that these requirements are met; none of this is checked by
the machine.

As has been previously discussed, Smalltalk makes a strong distinction between the insides and
the outsides of an object. A method for satisfying a constraint is internal to the constraint and
its owner, while the message plan that describes the method is the external handle of that
method. It is the message plan that is used by the constraint satisfier in planning how to satisfy
an object’s constraints.

In particular, the path of a message plan describes the side effects of its method. The constraint
satisfier uses this information to detect overlap in the parts affected by the various methods.
Therefore, the more precisely one can specify which subparts are affected by the method, the
more information the constraint satisfier will have to work with. Also, the constraint satisfier
can do more with a method if it is known that there is only one state of the subpart affected by
the method that will satisfy the constraint, given the states of all other parts. [This is described by
the Boolean variable uniqueState listed previously] In all the examples given, uniqueState has been true.

This way of describing constraints allows the representation of relations that are not very
analytically tractable. Any sort of relation can be expressed as a constraint, if a procedural test
exists, and some algorithm can be specified for satisfying the relation. In the most extreme case
of analytical intractability, the constraint will have a single method that affects the entire object
that owns the constraint, and this message will not be uniqueState. However, in such a case, the
constraint satisfier will have little to werk with, and only one such constraint can be handled.

Constraints on Sels

A subclass of Constraint, namiely class SetConstraint, is used to represent constraints that apply
to the members of a set. The rule portion of a SetConstraint is the same as for a normal
constraint. However, rather than being listed explicitly for each constrained part, the methods
that the SetConstraint can use to satisfy itself are specified by a template for the method to be
used to alter any one of the members of the set. (All the members are treated alike.) An
example of an object that uses a SetConstraint is an ElectricalNode, as described in Chapter 2.




58 CONSTRAINTS

Class EtlectricalNode
Superclasses
ElectricalObject
Part Descriptions
voltage: a Voltage
currents: a Set
location: a Point
Constraints
currents sum = 0.0
fortachg current in: currents methodisg
[current < 0.0 - (currents excluding: current) sum]

For this class, to make it easier to find all the parts affected by the constraint, the set is stored
as a set of paths to the currents, rather than as direct pointers [cf. the section on External References in
Chapter 3). During constraint satisfaction, the constraint on the node generates a method for each
current flowing into it by substituting the appropriate path from the set for the formal name
current in the template. For example, consider two resistors r/ and r2 that are connected in
series with the merge 11 lead2 node = 12 lead! node. The set of currents flowing into the
node that connects them would contain the paths 11 lead2 current and 12 lead1 current.
When the constraint was asked for its methods, it would return:
1 lead2 current <
0.0 - (r1 lead2 node currents excluding: r1 lead2 current) sum
and
2 lead! current <
0.0 - (r2 lead! node currents excluding: 2 lead1 current) sum.
Two message plans are also generated to describe these methods. When one of the message
plans is asked to generate code to invoke its method, it inserts that method in-line.

Who Owns the Constraints?

A constraint on several objects can be owned by any object that has all of the constrained
objects as parts or subparts. For example, the horizontal constraint involves two points, both of
which are parts of an instance of HorizontalLiine. The constraint is owned by HorizontalLine.

Meta-Constraints

There are a number of pieces of information embedded in ThinglLab’s structures and code that
are best regarded as meta-constraints, that is constraints on how other constraints are satisfied.
For example, in the midpoint constraint, the user preferred that the constraint be satisfied by
altering the midpoint rather than one of the endpoints of the line. Similarly, the anchors on the




i

CONSTRAINTS 59

constants in the temperaturc converter in Chapter 2 tell the constraint satisfier that these
numbers should not be changed to satisfy other constraints. There is also a global meta-
constraint built into ThingLab’s constraint satisfaction mechanism: don’t change something
unless you have to.

Currently, ThinglLab has no general meta-constraint facility. It would be well if these sorts of
meta-constraints werc explicitly represented and used. Some ideas on this may be found in
Chapter 6.

Merges

An important special case of a constraint is a merge. When several parts are merged, they are
constrained to be all cqual. For efficiency, they are usually replaced by a single object, rather
than being kept as several scparate objects. The owner of the parts maintains a symbolic
representation of the merge for use by constraint satisfiers, as well as for reconstruction of the
original parts if the merge is deleted. There are two principal uses of merging, both of which
were illustrated by the introductory example in Chapter 2. The first use is to represent
connectivity, for example, to connect the sides of the quadrilateral. The other is for applying
pre-defined constraints, as was done with the midpoint constraint. As with constraints, adding
or modifying a merge is a structural change, so only prototypes will allow their merges to be
edited. The process of merging is the same for both these uses. The object that owns the parts
to be merged (e.g. QTheorem) is sent the message merge: paths, where paths is a list of paths to

the parts to be merged.

When it can be done, the replacement of several merged objects by a single object yields a
more compact storage format, and speeds up constraint satisfaction considerably, since
information need not be copied back and forth between the parts that have been declared
equal. It does not result in any loss of information, since the owner of the parts keeps a
symbolic representation of the merge that contains enough information to reconstruct the
original parts. On the other hand, it is slower to merge or unmerge parts, since more
computation is required; so for applications in which the structure of the object changes
frequently, equality constraints are more efficient. [For a while, merges were always represented using
equality constraints; but this was abandoned because it was too slow for typical uses of ThingLab. However, it was
much simpler - see the section Programming Difficulties in this chapter] Another efficiency consideration is
that a single merge can apply to an indefinite number of objects, while constraints have built
into them the number of objects to which they apply. Thus, it is simple to make five separate
points be equal using merges. To do this with equality constraints would require either that
four separate constraints be used, or that a special equality constraint be defined for use with
five objects.




60 CONSTRAINTS

Constructing a Merge
[Warning: heavy seas for the next six nautical paragraphs.]

The mecthod for the merge: message uses another message, mergeWith:, which will now be
described. The default method for mergeWith: is implemented recursively as follows. The
receiver self and the argument arg must both be instances of the same class. After checking
that this is the case, a new instance result of the receiver’s class is made. Then, resulf’s parts are
constructed by merging the corresponding parts of self and arg, again using the mergeWith:
message. The process stops when primitive parts are reached. Some objects have their own
interpretations of the mergeWith: message. For example, the result of merging two sets is the
union of those sets.

The internal effects of the merge: message depend on what sorts of parts are being merged.
There are three cases. In the first case, the parts being merged are all instances of the same
class, and are ordinary parts as opposed to primitive parts. [A primitive object, e.g. an integer, is one
that has no parts of its own.] In the second, the parts are again not primitives, but are instances of
different classes. In the third, the parts are primitive parts (the classes don’t matter in this case.)

In the first case, a new part is constructed using the mergeWith: message described above. A
pointer to this new part is then substituted for each pointer to either of the original parts. In
addition, an instance of class MergeConstraint is created that owns paths to the merged points,
and is indexed in a table owned by the object’s class.

In the second case, the simple strategy described above won’t work, because the mergeWith:
message can be used only with instances of the same class. [Otherwise, what would be the class of the
result?) Instead, the object finds the nearest common primary superclass of the classes of each of
the parts being merged. [Since all classes are subclasses of class Object, all classes have some superclass in
common.] Next, the object asks the common superclass for its part names, and sends itself a
series of merge: messages to merge the subparts of the parts being merged that were inherited
from this common superclass. If the common superclass has no parts, then the merge is
vacuous, and the error handler is invoked. [This will not happen when graphically adding a merge with

the ThinglLab window. A moving object will stick only to those parts with which it can merge non-vacuously.]

An example may make this second case clearer. Suppose that we have an object with two parts,
a HorizontalLine and a DottedLine. Both parts are instances of subclasses of Line.
Class MergeExample
Superclasses
GeometricObject
Part Descriptions
parti: a Horizontalline
part2: a Dottedline




e ———————————— . ovaamizaie |

CONSTRAINTS 61

We ask it to merge the two lines by sending it the message

merge: 'partt’, 'part2’.
[The argument is a list of length 2 consisting of a path to pars/ and a path to parr2] It cannot use the simple
method, since the parts are of different classes. Therefore, it finds the nearest common
superclass of HorizontalLine and DottedLine, which is Line. Next, it finds the part names of
Line, namely point/ and point2. Finally, it sends itself the messages

merge: 'part! pointi’, 'part2 point1’
and

merge: 'part! point2’, ’part2 point2’.
Since the endpoints are all instances of class Point, MergeExample can use the simple kind of
merging in responding to these new messages.

In the third case, the parts being merged are primitives. Here, the object will automatically
construct an equality constraint instead of using a merge. The reasons for this will be discussed
in the section Assignment Statements, to follow. [This is why the horizontal line had a constraint rather
than a merge to keep equal the y values of its endpoints.]

The complexities of the second case arise because of the way primary superclasses are
represented; for other superclasses, which are represented in ThingLab by having an instance of
the superclass as a part, the first method can be used. Indeed, before the algorithm for doing
the second case was discovered, all subclasses in ThinglLab were represented by including an
instance of the superclass as a part.

Symmetry

Are merges symmetric with respect to the merged parts? This question has been divided into
two parts: symmetry in the representation of the merge, and symmetry during the process of
adding the merge. The representation is completely symmetric. The process of adding the
merge could be symmetric, but often is not. In the editor, normally one of the parts being
merged is moving with the cursor, while the other is stationary. The stationary part is given
preference in computing the result of the merge. For example, when the line part of the
moving MidPointLine was merged with a side of the quadrilateral, the result of the merge was a
new line whose endpoints had the same locations as those of the original side.

Programming Difficulties

The most difficult parts of the ThingLab system to program and debug were those that deal
with adding and editing merges. As an example of the sort of complexity that arises, consider
the following editing operation. The object being edited has two parts, both triangles. A side
of the first triangle is being merged with a side from the second.




62 CONSTRAINTS

Class TwoTriangles

Superclasses
GeometricObject

Part Descriptions
triangle1: a Triangle
triangle2: a Triangle

Merges
triangle1 side3 = triangle2 sidel

When the sides are merged, a new line results. The new line must be substituted for the old
side3 of trianglel and for the old sidel of triangle2. Further, because of the merges in the class
Triangle, pointl of the new line must be substituted for trianglel sidel pointl and for triangle2
side3 pointl. Similarly, poini2 of the new line must be substituted for trianglel side2? point2 and
for triangle2 side2 pointl. All this is happening in the context of an interactive editing session,
so it shouldn’t take forever.

Perhaps all this could be simplified by viewing merges as constraints on bindings, and using the
regular constraint satisfaction mechanism; but this has not been done in the current version.

Assignment Statements
[This section supplies additional detail not essential to the material in the chapters that follow.]

As should be apparent from the above description, substituting a new part for an old one can
be expensive when merges are present. However, in Thinglab it is a comparatively rare
operation. The usual case of an assignment statement is handled by recursively copying the
values from one object into the other, rather than by smashing the pointer to the old object. A
little background is needed in explaining this.

In procedure-oriented languages, a reasonable way of viewing assignment is that there is an
assignment operator to which the system presents the address of a variable along with a new
value to be stored into that variable. Smalltalk doesn’t do it this way. Rather, the object that
has the variable as a part is sent a message requesting assignment of some value to that variable.
This message will invoke a method. The method may substitute a pointer to the new value for
the pointer to the old one; but then again it may do something else. The sender of the message
need only be concerned with its effect, not with the internal method for receiving the message.
This is another example of Smalltalk’s strong distinction between the outside and the inside of
an object.

As described in Chapter 3, methods for reading and writing an object’s parts are automatically
generated and compiled by the part descriptions. The exact methods depends on the type of




Y=/ P S Ry

CONSTRAINTS 63

the part, which will be either ordinary or primitive. Primitive objects, c.g. integers, are
considered to have no parts of their own. The part description always compiles the same
method for reading the field, but compiles different methods for writing it depending on
whether the part is ordinary or primitive. [It finds what type it is by sending the part's class the message
isPrimitive] For an ordinary part, such as a line that is the side of a triangle, the following sorts
of methods are compiled.
Class Triangle
side1l [Nsidel]
side1< temp [sidel copyfrom: temp]
For those not familiar with Smalltalk syntax, the first method is interpreted as follows:
To receive the message sidel, return my part named sidel.
The second method is interpreted as:
To receive the message sidel <, get a single crgument and bind it to the
temporary variable temp. Ask my part named side! to copy its values
from [emp. [The selector sidel« is one atom - the identifier and the arrow are grouped into a single

selector by the compiler.]
Note that in this method the pointer to the side is not changed, so that none of the triangle’s
merges will be affected.

On the other hand, for a primitive part, such as the x value of a point, a method for writing
this part is compiled that does change the pointer to the value.
Class Point
x [Nx]
X¢ temp [x ¢ temp]
The first method is interpreted as in the previous case. The second method is interpreted as:
To receive the message x<, get a single argument and bind it to my part
named x.

The implementation of the copyFrom: message is of interest. For an object composed of
ordinary parts, such as a uriangle, the message is interpreted as follows:
Class Triangle
copyfFrom: otherTriangle
[sidet copyFrom: otherTriangle sidet.
side2 copyFrom: otherTriangle side2.
side3 copyfFrom: otherTriangle side3]
On the other hand, the interpretation is different for an object with primitive parts, such as a
point.
Class Point
copyFrom: otherPoint
[x < otherPoint x.
y < otherPoint y]




64 CONSTRAINTS

For an ordinary part, the copyFrom: message results in recursively sending the copyFrom:
message to that part. For a primitive part, the pointer in the field is changed. [In the actual

system, each class doesn’t have its own method for copyFrom:. Rather, there is a default implementation in class
Object that branches on the type of the part]

An important feature of this scheme is that the external behavior of both kinds of parts are the
same. If an object has a part p, the external manifestation of this is that the object understands
the messages p and pe«. Internally, the methods for receiving these messages depend on what
type of a part is p.




65

Chapter 5 - Constraint Satisfaction

Overview of Constraint Satisfaction

Constraint satisfaction is divided into two stages: planning and run-time. Planning commences
when an object is presented with a message plan. This message plan is not an actual request to
do something; rather, it is a declaration of intent -- a description of a message that might be
sent to the object. Given this description, the object will gencrate a plan to be used at run-time
for receiving such messages, while satisfying any constraints that might be affected. The results
of this planning are compiled as a Smalltalk method. Directions for calling the compiled
method are returned as a new message plan.

Consider the quadrilateral example described in Chapter 2 (shown again in Figure 5.1).

RO e e e e
Futry Gearngsric Objecs
ns
DRQYTEYS [ YT NS air PAuiFaLeL e
Rectande ST
TixeThing Qe n;g_ Chiadnidateral
Trianal: it fexi Rectaruile
- S Tnﬂ“"‘;:
P ~
-~ .
f“ ~
AN .
-~ N\
E \
\ N\
\
3 BRI
. i
\\\ J

Figure 5.1 - Moving the vertex of a quadrilateral

When the user selects move Point and first positions the cursor over a vertex of the
quadrilateral, the Thingl.ab window composes a message plan and presents it to the
quadrilateral. The quadrilateral decides how to move its vertex while still keeping all the
midpoint constraints satisfied, and embeds this plan in a compiled Smalltalk method. It then
returns another message plan that gives directions for invoking that method. As the user pulls
on the vertex with the cursor, the window repeatedly sends the quadrilateral a message asking it
to update its position. This message invokes the Smalltalk mcthod that was just compiled.

During planning, the object that is presented with the message plan creates an instance of
ConstraintSatisfier to handle all the work. The constraint satisfier gathers up all the constraints
that might be affected by the change, and plans a method for satisfying them. The constraint
satisfier will first attempt to find a one-pass ordering for satisfying the constraints. There are
two techniques available for doing this: propagation of degrees of freedom, and propagation of




66 CONSTRAINT SATISFACTION

known states. If there are constraints that cannot be handled by either of these techniques, the
constraint satisfier will ask the object for a method for dealing with circularity. Currently,
relaxation is the only such method available. If relaxation is used, the user will be warned, so
that perhaps some other redundant constraints can be supplied that will eliminate the need for
relaxation.

Constraint Satisfaction Methods

The constraint satisfaction methods used in ThinglLab will now be described in more detail. To
illustrate the operation of the methods, the electrical circuit example from Chapter 2 will be
used. [See that chapter for descriptions of the parts involved. Additional labels have been added to the picture in

Figure 5.2 to make it easier to refer to the various parts]

Nutnber = [eeeweeseeeeee e o s s e
Propert STIUCTUTS insert Ammeter
Rectang 259 dslete Batrery
Resistor prototype’'s values  Jconstrain Electricallead
Set as save file merge ElzcericalNode
Stream subclass template mave Ground
TextThing =~ [==omm e TR | Meter
TwoleadedObiect | e Resistor
Y 7Y AR de e
olernster woleadedubect
Wire YoltageDivider
——————— Volemeter

ml leadl

bl leadl

vle

w3 leadl

bl lead2

w3 lead2

wl leadl wl lead2 w2 leadl w2 lead2

Figure 5.2 - A voltage divider

Propagation of Degrees of Freedom

In propagating degrees of freedom, the constraint satisfier looks for a part with enough degrees
of freedom so that it can be altered to satisfy all its constraints. If such a part is found, that
part and all the constraints that apply to it can be removed from further consideration. Once
this is done, another part may acquire enough degrees of freedom to satisfy all its constraints.
The process continues in this manner until either all constraints have been taken care of, or
until no more degrees of freedom can be propagated.




A T R

CONSTRAINT SATISFACTION 67

Because of the difficulty of giving a precise definition of degrees of freedom for non-numeric
objects, the current constraint satisfier uses a simple-minded criterion for deciding if a part has
enough degrees of freedom to satisfy its constraints: it has enough degrees of freedom if there is
only one constraint that affects it. It doesn’t matter whether or not the constraint determines
the part’s state uniquely (removes all its degrees of freedom). [The power of the method could be
increased by taking advantage of the cases where better descriptions can be given of the degrees of freedom

available to a part]

In deciding when a constraint affects a part, the part-whole hierarchy must be taken into
account. The set of constraints that affect a given part is found by checking whether the path
to the part overlaps the paths of any of the message plans generated by the constraints. Thus, a
constraint on the first endpoint of a line affects the line as a whole, the first endpoint, and the x
coordinate of the first endpoint; but it doesn’t affect the line’s second endpoint.

In the voltage divider example, the text that displays the voltmeter’s reading has only a single
constraint on it: that it correspond to the voltage drop between m2 lead! node and m2
lead2 node. Similarly, the text in the ammeter is constrained only by its relation to mi
lead1 current. Therefore, these pieces of text can be updated after the voltage drop and
current are determined, and their constraints can be removed from further consideration. In
this case, there are no propagations that follow.

Propagation of Known States

This method is very similar to the previous one. In propagating known states, the constraint
satisfier looks for parts whose state will be completely known at run-time, i.e., parts that have
no degrees of freedom. If such a part is found, the constraint satisfier will look for one-step
deductions that will allow the states of other parts to be known at run-time, and so on
recursively. For the state of part 4 to be known (in one step) from the state of part B, there
must be a constraint that connects 4 and B and that determines A’s state uniquely. This is
indicated by the unigueState flag on the message plan whose target is 4. When propagating
known states, the constraint satisfier can use information from different levels in the part-whole
hierarchy: if the state of an object is known, the states of all its parts are known; if the states of
all the parts of an object are known, the state of the object is known.

If the state of a part is uniquely determined by several different constraints, one of the
constraints will be used to find its state, and run-time checks will be compiled to see if the
other constraints are satisfied.

In the example, this method would be used as follows. By the constraint on the ground, at run-
time b1 lead2 node voltage will be known. [Actually, it is alrcady known during planning, but the
constraint satisfier doesn’t use this information] Also, by the battery’s constraint, b1 lead! node
voltage will be known, which is the same as m1 lead! node voltage. The ammeter has a




68 CONSTRAINT SATISFACTION

constraint that there be no voltage drop across it, and so m1 lead2 node voltage will be
known. Similarly, the voltmeter has a constraint that it draw no current, and so the current in
its leads and connecting wires will be known. Finally, by the constraint on the wires, W1
lead2 node voltage, w2 lead2 node voltage, and w3 lead! node voltage are all
known.

The voltage at the node between the resistors, and all the other currents, are still unknown.

Relaxation

If there are constraints that cannot be handled by either of these techniques, the constraint
satisfier will ask the object for a method for dealing with circularity. Currently, relaxation is the
only such method available (unless the user supplies more information -- see below).
Relaxation can be used only with objects that have all numeric values; also, the constraints must
be such that they can be adequately approximated by a linear equation.

When relaxation is to be used, a call on an instance of Relaxer is compiled. At run-time, the
relaxer changes each of the object’s numerical values in turn so as to minimize the error
expressions of its constraints. These changes are determined by approximating the constraints
on a given value as a set of linear equations, and finding a least-mean-squares fit to this set of
equations. The coefficients of each linear equation are calculated by noting the initial error,
and by numerically finding the derivative of the error expressions with respect to the value.
Relaxation continues until all the constraints are satisfied (all the errors are less than some
cutoff), or until the system decides that it cannot satisfy the constraints (the errors fail to
decrease after an iteration). [See Sutherland 1963 for a fuller description of the relaxation method.

Often, many more parts would be relaxed than need to be. To help ease this situation, a trick
is used during planning. The trick is to try assuming that the state of one of the parts to be
relaxed, say P, is known. This part P is chosen by looking for the part with the largest number
of constraints connecting it t~ other still unknown parts. P is placed in a set S. Then the
method of propagation of known states is invoked to see if the states of any other parts would
become known as a result. All the parts which would become known, along with P itself, are
eliminated from the set of parts to be relaxed. The process is repeated until the set of parts to
be relaxed is empty. At run-time, only the parts in S are relaxed. As each part P in S is
relaxed, the system also computes the new states of the parts which had become known as a
result of assuming that P was known. In computing the error in satisfying the constraints on P,
the system considers the errors in satisfying both the constraints on P itself, and also these other
parts. [The heuristic for choosing P was adapted from that used in the EL circuit analysis program for picking an

unknown when doing symbolic algebraic manipulations (Stallman & Sussman 1977)].

In the voltage divider, 12 lead! current has three constraints connecting it to other
unknowns: the Ohm’s law constraint on r2, r2’s constraint inherited from TwoLeadedObject,




e g |

CONSTRAINT SATISFACTION 69

and the Kirchhoff's law constraint on 12 lead! node. No other unknown has more
constraints, and so the system will try assuming that it is known. Given its value, 12 lead1
node voltage and all the other currents would be known. Therefore, at run-time, only 12
lead1 current will be relaxed.

Using Multiple Views to Avoid Relaxation

Using the method employed by Steele and Sussman [Steele & Sussman 1978], another view of the
voltage divider may be added that obviates the need for relaxation. First, a new class is defined
that cmbodies the fact that two resistors in series are equivalent to a single resistor.

Class SeriesResistors
Superclasses
ElectricalObject
Part Descriptions
TA: a Resistor
rB: a Resistor
rSeries: a Resistor
Constraints
rSeries resistance = rA resistance + rB resistance
rSeries resistance < rA resistance + rB resistance
TA resistance reference
rB resistance reference

Merges
TA lead2 node = rB lead! node
rA leadl = rSeries leadt
B lead2 = rSeries lead2

The constraint specifies that the resistance of the equivalent single resistor be equal to the sum
of the resistors in series. The first merge simply connects r4 and B in series. The other
merges, however, apply to leads rather than nodes. The second merge states that TA lead1 and
rSeries lead! are identical. Hence, the currents in these leads are also identical, and TA
lead! node will have a single current flowing into it. [All this is handled automatically by the
system -- all the user needs to do is enter the merge] The third merge plays an analogous role.

In the picture of an instance of SericsResistors (Figure 5.3), the symbol for rSeries is offset to
the left and connected with dotted lines, indicating that it is an equivalent circuit element rather
than a resistor in parallel with r4 and rB.




70

The resistors r4 and rB of SeriesResistors are designated as attachers. To add this new
description to the voltage divider, an instance of SeriesResistors is inserted in the circuit (call it
series), and the resistors r4 and rB of series are merged with the existing resistors 7/ and r2 in

CONSTRAINT SATISFACTION

Maanitude

Eeter
NewVoltage Divider
Number
bject
Poing
PommeOniine
Frope m{

Recranale
Resiator

proforype’s valtes
as save file
subclass template

Mser

e | RE

consrrain
merge
mole
edir text

Ammeter
Battery
EleceriCaliead
tlectncatNode
Ground

Meter

Resistor
SeresResistors
TextThing
TwoleadédiTbject
VoltageDunder

Figure 5.3 - Picture of the prototype SeriesResistors

the circuit (Figure 5.4).

Using this additional description, all the constraints can be satisfied in one pass. As previously
described, m1 lead2 node voltage and W1 lead2 node voltage are both known. These

Magnitude
hetet
N

umber
bject
Poing
FomeOnline
Froperty
Rectangle
Resiaror
SenesResistors
Wt

i
PrO(OTYPS
as save file

subclass template

nsert

) ¢ | GRabddg
S palues

constrain
merge
move
2dit et

Ammeter
Batrery
Elecericallead
ElectncalNode
Ground

Meter

Resistor
SenesResistors
TextThing
TwoleadedObject
YoltageDunder

ne

Figure 5.4 - The voltage divider with an added instance of SeriesResistors




e R e S s

CONSTRAINT SATISFACTION 71

are the same as Series rSeries lead! node voltage and series rSeries lead2 node
voltage respectively. Thus, by the Ohm’s law constraint on Series rSeries, series rSeries
lead1 current is known. But this is the same current as Series rA lead! current, and
also the same as 11 lead! current. Again by Ohm’s law, the voltage at the midpoint, 1
lead2 node voltage, is known. All the other currents are also known.

There are many questions remaining to be explored in connection with the use of multiple
views in constraint satisfaction. [See also Chapter 6] For example, one should be able to tell the
system explicitly about redundant views. This would allow the system to use propagation of
degrees of freedom in the presence of such views, and would also allow it to do some checking
to see that it was appropriate to apply the redundant view.

In the above example, propagation of degrees of freedom was used to postpone updating the
ammeter’s reading until after the voltages and currents had been found. However, suppose that
there were another constraint on the ammeter that gave a redundant description of how to
update the text that displays its reading. In this case, the system would not have been able to
use propagation of degrees of frecdom, since it would not know that a value for the text could
always be found that would satisfy both constraints simultaneously. If these two constraints
were explicitly described as being redundant descriptions, however, the method could still be
used.

In regard to checking whether it is appropriate to apply a redundant view, consider the process
described above of viewing two resistors in series as being equivalent to a single resistor. The
parts r4 and rB of an instance of SeriesResistors should only be merged with a pair of resistors
that are already connected, and there should be no significant other current flowing from the
center node of the resistors. In one sense, the system already ensures that these conditions will
be satisfied. If the existing resistors are not already connected, the act of merging the two
resistors from an instance of SeriesResistors will cause them to be connected. Also, if there is a
significant other current flowing from the center node of the resistors in series, not all the
constraints will be satisfied at run-time. However, the system could do a better job of
informing the user of unsatisfiable constraints if it knew about the use of a redundant
description.

The Process of Transforming a Message Plan

During planning, an object is presented with a message plan that describes a Smalltalk message
that might be sent to it at run-time. The object constructs a method for receiving such
messages, and returns a new message plan that gives directions for invoking the method. This
is called transforming the message plan. In the simple case, when no constraints are present, the
result of transforming the message plan is the same as the original plan. However, a quite
different plan may be returned if there are constraints that would affected by the message




72 CONSTRAINT SATISFACTION

described by the original plan.

As a simple example of this, consider moving an endpoint of a horizontal line. During
planning, the horizontal line is presented with the message plan

horizline pointi moveby: delta.
This message plan represents the actual request that might be made of the line at run-time.
The horizontal line constructs a Smalltalk method for receiving a message that moves its pointl,
while still keeping itself horizontal. A selector is chosen for this method, say pointl Moveby.
Finally, the horizontal line returns a new message plan that provides directions for invoking this
method, namely

horizline pointiMoveby: delta.

It is important to remember that a message is a request to an object, not an operator that can
freely manipulate the object that receives it. Thus, if an object is asked to transform a message
plan, one of the things it can do is to indicate that it will refuse to receive such messages. In
this case, either the sender of the rejected message plan is notified, or if no provision was made
for this, the Smalltalk error handler is called.

A Detailed Example

A more detailed example of transforming a message plan will now be given. The following
classes will be used in this example:

Class Line
Superclasses
GeometricObject
Part Descriptions
pointi: a Point
point2: a Point

Class Horizontalline
Superclasses
Line
Constraints
point1 y = point2 y
pointt y €« point2 y
point2 y €« point! y



CONSTRAINT SATISFACTION

Class Verticalline
Superclasses
Line
Constraints
point1 x = point2 x
point! x ¢ point2 x
point2 x ¢ pointl x

Class DemoRectangle

Superclasses
GeometricObject

Part Descriptions
sidel: a Verticalline
side2: a Horizontalline
side3: a Verticalline
side4: a Horizontalline

Merges
side! point1 = side2 pointi
side2 point2 = side3 pointi
side3 point2 = side4 point2
side4 pointi = sidel point2

The object used in the example will be an instance r of DemoRectangle (Figure 5.5). [The class
DemoRectangle is not the same as the normal Smalltalk class Rectangle, which has as its parts an upper-left hand
corner and a lower right-hand corner.  Constraint satisfaction would be trivial for instances of Rectangle]

side2 point1 side2 point2

side1 point1 side3 point1

side1 point2 side3 point2
side4 point1 side4 point2

Figure 5.5 - Aninstance of DemoRectangle

Suppose that the user wishes to pick up and move the right-hand side of r with the cursor. In
the Thinglab window, this is accomplished by repeatedly asking r to move its side by some
increment delta, where delta is a point. [Strictly speaking, delfa ought to be an instance of PointIncrement
or some such class, rather than Point] First, a message plan m is constructed and presented to r.

73




74 CONSTRAINT SATISFACTION

This plan is:

r side3 moveby: delta
Here, the receiver is r, the path is side3, the action is moveby:, and the symbolic argument is
delta. The rectangle is asked to transform m into a new message plan that gives directions for
invoking a method for moving side3, while also satisfying all the rectangle’s constraints. Once a
transform of m has been found, the window can use this information in moving the side.

The steps in transforming a message plan are outlined below. In the following sections, each of
these steps is described in more detail

First see if a transform of the message plan has already been constructed. If so, use it.
If not:

Check whether a message described by the plan would affect any of the receiver’s
constraints. If not, then forward the message plan to the part, and use the transform
returned by that part.

Otherwise:

Build a queue of message plans describing methods that might need to be invoked to satisfy
the constraints. First, do a compile-time expansion of the original plan.

Add to the queue other message plans by checking the constraints and merges of the
receiver and its parts.

Process the message plans in the queue. If possible, find a one-pass ordering for invoking
at run-time the methods described by the plans; otherwise, compile a call on the
relaxation method. Include run-time checks if needed.

Using the ordering found in the previous step, compile a Smalltalk method.

Finally, construct a transform of the message plan, whose action is to invoke the Smalltalk
method. Index the plan and its transform in a dictionary for future use.

The Dictionary of Message Plans and Transforms

When ris asked to transform the message plan m, it first checks in its dictionary of transforms
to see if such a transform has already been constructed. This dictionary consists on the name
side of incoming message plans, and on the value side of transforms of these plans. In this
case, suppose a transform for m is not in the dictionary.

If the prototype DemoRectangle were edited by adding or deleting parts, or its constraints or
merges were changed, some of the transforms might become obsolete. Currently, all transforms
are forgotten when any such change occurs. An improvement would be to check which ones
are affected by the change, and to forget only these entries. [This would amount to keeping track of

dependencies on a class-wide basis.]




CONSTRAINT SATISFACTION 75

Checking the Message Plan for Interaction with the Receiver’s Constraints

The first name on the path of the message plan is side3. If r had no constraints or merges
involving side3, then the transform would be constructed using a transform obtained from
VerticalLine as a "subroutine”. However, r does have merges involving side3, so this cannot be
done. An example of using the transform obtained from a part will be presented later in this
chapter.

Compile-time Expansion of Message Plans

The next step is to check if the message plan has a compile-time expansion. A message queue
is created, and r asks its part, pointed to by the path side3, to expand the original plan into this
queue. The vertical line uses the default expansion method inherited from Object, and expands
the moveby: message plan into two moveby: message plans, one for each of its endpoints. The
endpoints are in turn asked to do a compile-time expansion of these message plans. Points,
however, are themselves willing to receive moveby: messages at run-time, and the expansion
stops. The message queue is now:
MessageQueue
1: side3 point1 moveby: delta (alters side3 point1)
2: side3 point2 moveby: delta (alters side3 point2)

More information about compile-time expansion may be found in the Leffovers section.

Adding Message Plans from Constraints to the Queue

Each message plan in the queue is checked to see if its path overlaps the paths of any of the
receiver’s constraints or merges. If a constraint overlaps a message plan, then copies of the
constraint’s message plans are added to the queue. On the other hand, if a merge overlaps one
of the message plans, the message plan is checked for each distinct path to the merged part.

The rectangle itself has no constraints. However, two of its merges do overlap the message
plans in the queue. The paths side3 pointl and side? point2 both refer to the same point.
Therefore, the first message plan will be checked using both of these paths. The other message
plan is treated in an analogous fashion.

Each message plan in the queue must now be checked against the constraints and merges of rs
parts. The first message plan with the first of its merged paths is

side3 point! moveby: delta.
The first name on the path is stripped off, and the message plan

point! moveby: delta
is forwarded to side3. This part is a vertical line, and its constraint overlaps the path of the
forwarded message plan. Consequently, copies of the message plans that describe the methods




76 CONSTRAINT SATISFACTION

this constraint can use to satisfy itself are added to the queue. The queue is now:
Message Queue
1: side3 point1 moveby: delta (alters side3 pointt)
2: side3 point2 moveby: delta (alters side3 point2)
3: side3 vert-pointi-x (alters side3 pointi x)
4: side3 vert-point2-x (alters side3 point2 x)
Message plan 3 describes one of the methods for satisfying the vertical line’s constraint, namely
the method
vert—pointi-x
[point1 x « point2 x]
Message plan 4 describes the other method. Note that the paths of the constraint’s message
plans have been prefixed by the name side3, since these messages are now for r.

The vertical line side3 strips off the next name on the path of message plan 1, and forwards the
message plan

moveby: delta
to its first endpoint. The point has no constraints or merges of its own. The plan’s path is now
empty, and so there are no more subparts to be checked.

The other path to the upper right-hand corner, namely side? point2, is now checked. This
causes the constraint on the top horizontal line to add message plans S and 6.
Message Queue
12 side3 point1 moveby: delta (alters side3 pointi1)
side3 point2 moveby: delta (alters side3 point2)
side3 vert—point1-x (alters side3 pointi x)
side3 vert—-point2-x (alters side3 point2 x)
side2 horiz-pointi-y (alters side2 pointi y)
side2 horiz-point2-y (alters side2 point2 y)

o NS WN
DY R Y SN Y

The other moveby: message plan is treated in a similar fashion. The message plans added by
the constraints are checked as well, since they might overlap some other constraint or merge.
There is a mechanism for preventing infinite recursion: before adding copies of its message
plans, a constraint checks to see if it has already added copies to the queue. If so, no new
copies are added.




CONSTRAINT SATISFACTION 77

The final state of the queue is:
Message Queue
1: side3 point! moveby: delta (alters side3 point1)
side3 point2 moveby: delta (alters side3 point2)
side3 vert-point1-x (alters side3 pointi x)
side3 vert—point2-x (alters side3 point2 x)
side2 horiz-pointi-y (alters side2 point1 y)
side2 horiz-point2-y (alters side2 point2 y)
side4 horiz-pointi-y (alters side4 point1 y)
8: side4 horiz-point2-y (alters side4 point2 y)
Message plans 3 and 4 were added by the vertical constraint on side3, message plans 5 and 6 by
the horizontal constraint on side2, and message plans 7 and 8 by the horizontal constraint on
side4d. None of the various paths of the message plans in the queue overlap the vertical

N O s WwN
PR YA A A

constraint on sidel/, and so that constraint added no plans.

Processing the Message Plans in the Queue

The first step in processing the message plans is to look for preferences. The system
distinguishes preferences from relations that must hold. Requests made by the user to change a
value are considered preferences: the system will attempt to honor them, but if the request
violates a constraint, it will be overridden. Message plans 1 and 2, which represent the user’s
request to move a side, are preferences of this sort. The messages described by these plans will
be sent first. The system will attempt not to undo these edits, but may do so if pressed. After
processing the preferences, message plans 1 and 2 are removed from the queue, and put in the
list of plans describing messages to be sent first. Also, the constraint satisfier notes that the
points that thesc message plans affect should not be changed unless necessary.
Messages to be Sent First
1: side3 point1 moveby: delta (alters side3 point1)
2: side3 point2 mouveby: delta (alters side3 point2)
Prefer not to Alter
side3 pointi
side3 point2

Propagation of degrees of freedom is used next. In using this method, the constraint satisfier
looks for a message plan such that its target has enough degrees of freedom to satisfy all its
constraints. It turns out that all six remaining message plans meet this requirement, since each
of the numbers that are their targets has only one constraint that affects it. Thus, any of these
numbers could be chosen so as to satisfy its constraint. However, the constraint satisfier would
prefer not to alter side3 pointl or side3 point2. The constraint satisfier notes that, after taking
merges into account, these two paths overlap all the message plans’ paths except for those of
message plans 5 and 7. The constraint satisfier then decides that the messages described by




78 CONSTRAINT SATISFACTION

these two plans can be sent last. Since these messages will take care of satisfying the two
horizontal constraints, the remaining two message plans added by the horizontal constraints can
be discarded.
Messages to be Sent First
1: side3 pointi moveby: delta (alters side3 pointt)
2: side3 point2 moveby: delta (alters side3 point2)
Messages to be Sent Last
5: side2 horiz-pointi-y (alters side2 point1 y)
7: side4 horiz-pointi-y (alters side4 pointi y)
Discarded Messages
6: side2 horiz-point2-y (alters side2 point2 y)
8: side4 horiz-point2-y (alters side4 point2 y)
Prefer not to Alter
side3 pointi
side3 point2

[Incidentally, if the system were running on a multi-processor machine, the constraint satisfier could have included as
part of the plan the information that messages 5 and 7 could be sent in parallel. ~ See Chapter 6.]

Propagation of degrees of freedom is tried again. This time, the only message plans remaining
do affect side3. So the constraint satisfier decides to send the message described by one of
these plans, say message plan 3. [The constraint satisfier is not smart enough to realize that if the vertical
constraint were satisfied before moving the line, it would be satisfied after the entire line is moved. Thus, the
message described by plan 3 will actually be sent, even though it won’t change anything] Sending this message
will take care of satisfying the vertical line constraint, so message plan 4 may be discarded. The
queue is now empty, and this phase of constraint satisfaction is over.
Messages to be Sent First
1: side3 point1 moveby: delta (alters side3 pointi)
2: side3 point2 moveby: delta (alters side3 point2)
Messages to be Sent Last
3: side3 vert—-pointi-x (alters side3 pointi x)
5: side2 horiz-pointi-y (alters side2 point! y)
7: side4 horiz-pointi-y (alters side4 pointt y)
Discarded Messages
6: side2 horiz-point2-y (alters side2 point2 y)
8: side4 horiz-point2-y (alters side4 point2 y)
4: side3 vert—point2-x (alters side3 point2 x)
Prefer not to Alter
side3 point1
side3 point2




CONSTRAINT SATISFACTION 79

Compiling Smalltalk Code

A plan has been constructed for moving side3 while still satisfying all the rectangle’s constraints.
The system now embeds this plan in a Smalltalk method understood by DemoRectangle. A
name for this method is generated by ingloriously squishing together the path and action from
the message plan. Code for the method is accumulated by asking each of the message plans to
add code to a stream. The method compiled by the system is:
side3Moveby: delta
[side3 point1 moveby: delta.
side3 point2 moveby: delta.
side3 vert-pointi-x.
side2 horiz-pointi-y.
side4 horiz-pointi-y.]
At run-time, this method will in turn invoke methods belonging to the horizontal and vertical
constraints, namely
Class Horizontalline
horiz-pointi-y
[point1 y € point2 y]
Class Verticalline
vert-point1-x
[point1 x € point2 x]

Constructing the Transform

The rectangle r is now able to return a transform of the original message plan
side3 moveby: delta.
The transform is simply
side3Movrcby: delta.
In other words, the transform has an empty path, and its action is to invoke the newly compiled
method. The message-transform pair is indexed in DemoRectangle’s dictionary of transforms.
At this point, the reader who has waded through all the steps will appreciate the virtues of
saving this transform for future use.

Leftovers

Parts of the transformation process not exercised by the above example will now be described.




80 CONSTRAINT SATISFACTION

Using Transforms Obtained from Parts

In the last section, it was mentioned that in the absence of interactions with the receiver’s
constraints, the transform obtained from a part could be used as a "subroutine”. Consider an
object consisting simply of two rectangles.
Class TwoBoxes
Superclasses
GeometricObject
Part Descriptions
box1: a DemoRectangle
box2: a DemoRectangle

Suppose that the user wants to move the right-hand side of box2. The instance of TwoBoxes is
asked to transform a message plan m, namely
box2 side3 moveby: delta.
Further, suppose that there is no entry for m in TwoBoxes’ dictionary of transforms. The next
step is to check the first name on m’s path for interactions with TwoBoxes’ parts. The first
name is box2. There are no constraints or merges involving box2 (in fact there are none at all).
Therefore, the transform obtained from DemoRectangle may be used. TwoBoxes strips the first
name off m’s path, and asks DemoRectangle to transform the message plan
side3 moveby: delta.
DemoRectangle looks up this plan in its dictionary, and quickly returns the transform
side3Moveby: delta.
TwoBoxes inserts the name box2 at the head of the path, and returns as its transform
box2 side3Moveby: delta.

Another way of describing this process is that when there is no interference, plans obtained
from an object’s parts are re-used. The result of this is that plans for receiving a message are
stored as far down in the part-whole hierarchy as possible. There are much more powerful
ways in which the idea of plans obtained from subparts could be used. See Chapter 6.

More about Compile-time Expansion

Compile-time expansion is used with message plans that describe such things as translation and
scaling. Most message plans, however, simply expand to themselves.

There are two reasons for using the technique of compile-time expansion. First, it is not easy
to write, say, an efficient but general moveby: message. A first cut might be to have a default
moveby: message that simply asked each part to move, with points overriding the default. This
handles such things as lines, but fails in general. Consider a triangle.




CONSTRAINT SATISFACTION 81

Class Triangle
Superclasses
GeometricObject
Part Descriptions
sidel: a Line

side2: a Line
side3: a Line

Merges
sidel point! = side3 pointi
side1 point2 = side2 pointi
side2 point2 = side3 point2

If the triangle reccived a moveby: message, it would in turn ask each of its sides to move. Each
side would then ask its endpoints to move. But because of the merges, each vertex would be
moved twice! It would be possible to keep track at run-time of all the objects that have already
been moved. However, by using compile-time expansion, this can all be done during planning.
The original moveby: message plan would be expanded to:
MessageQueue
1: sidel point1 moveby: delta
2: side1 point2 moveby: delta
3: side2 point1 moveby: delta
4: side2 point2 moveby: delta
5 side3 point1t moveby: delta
6: side3 point2 moveby: delta
The system then notices which of the message plans refer to the same object, and eliminates the
duplicates. The following code would be compiled for Triangle:
moveby: delta
[sidet pointi moveby: delta.
side1 point2 moveby: delta.
side2 point2 moveby: delta.]

One way of looking at the process of eliminating duplicate message plans is to notice that the
duplications arise because of merges. Merges are just an efficient way of representing an
equality constraint. If the merged parts had not actually been collapsed internally, there would
have been an appropriate number of messages to each part.

The benefits of doing compile-time expansion during planning are greater with more complex
message plans. Another message plan that undergoes compile-time expansion is the "move the
i-th attacher” message. (See Chapter 2 for examples of attachers.) The expansion here is
fix the locations of attachers 1 to i-1, and move attachers i to n
(where n is the total number of attachers)




82 CONSTRAINT SATISFACTION

This message is used when inserting a ncw part into the object being edited. For example,
suppose the three vertices of an instance of Triangle have been designated as attachers. When
inscrting a triangle, the user positions the first vertex (with the entire triangle following), then
the second vertex (moving the second and third vertices), and then the third vertex. During
planning, the message plan
moveAttacher: 2 by: delta
is expanded to:
Message Queue
1: sidel point1 fix
2: side! point2 moveby: delta
3: side2 point2 moveby: delta
[Note: the message fix means "Add this path to Unalterable, but don’t generate any code”] Again, all this
could be done at run-time, but much less efficiently.

The other reason for using ccmpile-time expansion is that it is a way to avoid waking up
constraints needlessly. For example, consider the voltage divider again. Suppose the user wants
to move rl. This involves asking the voltage divider to transform the message plan

1 moveby: delta.
Using the constraint satisfaction scheme described above, but without compile-time expansion,
any constraint overlapping the path r/ would add message plans to the queue. In other words,
rI’s electrical as well as graphical constraints would need to be checked. With compile-time
expansion, the plan is expanded to

r1 lead! node location moveby: delta

r1 lead2 node location moveby: delta

r1 label frame origin moveby: delta

r1 label frame comer moveby: delta
and only the graphical constraints on r/ are checked.

More about Preferences

In the above examples, the user’s desires could be completely met, and all the object’s
constraints satisfied as well. This is not always possible. Consider a horizontal line with one
end anchored. If the user tries to move the other end with the cursor, the moving end will in
general not be able to follow the cursor exactly -- the x value of the endpoint will match that of
the cursor, but the y value will remain constant (see Figure 5.6).




CONSTRAINT SATISFACTION

Anchor SEructure insery Anchor .

2 h Aelete Constantiengthling
nehored QUad prototupe’s values |conscrain GeometnicObject

Constantlengthlingas save file merge ne )

GeometricObject  [subclass template MudFPointline

tne 7 feeme————— edit text

MidPoinsline o o e e | QUM Sray

Figure 5.6 - An anchored horizontal line

The classes for this example are as follows.

Class Horizontalline
(as previously defined)

Class AnchoredPoint
Superclasses
Point
Constraints
self fixed

Class Anchoredline
Superclasses
GeometricObject
Part Descriptions
line: a Horizontalline
anchor: an AnchoredPoint

Merges
line point1 = anchor

The compiled method for moving point2 of an instance of AnchoredLine is:

AnchoredlLine
linePoint2Moveby: delta
[line point2 moveby: delta.

line horiz-point2-y]

In other words, the anchored line will first make the change to its point2, but will partially undo

it to satisfy its constraint.

83




84 CONSTRAINT SATISFACTION

Constraints and the Procedural-Declarative Controversy

The last section of this chapter moves up from a detailed discussion of constraint satisfaction to
a more general level.

Several years ago, a major debate in artificial intelligence circles was occurring between
advocates of procedural and declarative representations of knowledge. Although indulgence in
this debate is no longer as fashionable as it once was ["Anyone who hasn’t figured this ’controversy’ out
yet should be considered to have missed his chance, and be banned from talking about it" McDemott 76], the
issues raised by it still remain. It is interesting to view the current Thinglab constraint
mechanism and its evolution in the light of this debate.

Superficially, the debate is between researchers who want to embed the knowledge that a
system has in its procedures, and researchers who want to represent knowledge as a set of facts
together with general-purpose programs for manipulating these facts. On the procedural side,
an extreme case is a monolithic LISP program; the corresponding extreme on the declarative
side is a system that represents all its knowledge in first-order predicate calculus, and uses a
resolution theorem prover to manipulate these facts.

Constraints are an amalgam of both declarative and procedural information. On the declarative
side, a constraint states what the relation is, which subparts of the object are affected by the
constraint, and which subparts may be altered to satisfy it. On the procedural side, it describes
procedures for making that relation be true. Notice, however, that the procedural parts of the
constraint are rather tightly controlled. These methods are invoked by the system, not the
programmer. Each of the methods, if invoked, must cause the constraint to be satisfied. The
side effects of the methods are described by message plans: each plan has a path to the part of
the constraint’s owner that the method alters; the method may alter no other parts. There is
also a relationship that must hold among the constraint’s methods. For every part that is
referenced by one of the methods, there must either be another method that alters it, or a
dummy method referencing it.

In his essay Frame Representations and the Declarative/Procedural Controversy [Winograd 1975],
Terry Winograd writes

... At this point it is tempting to look for a synthesis -- to say "You need both. Some
things are better represented procedurally, others as declarative facts, and all we need to do
is work on how these can be integrated.” This reaction misses what I believe is the
fundamental ground for the dispute. It is not simply a technical issue of formalisms, but is
an expression of an underlying difference in attitude towards the problems of complexity.
Declarativists and proceduralists differ in their approach to the duality between modularity
and interaction, and their formalisms are a reflection of this viewpoint. ...

If we look at our debate between opposing epistemologies, we see two metaphors at
opposite poles of the modularity/interaction spectrum. Modern symbolic mathematics
makes strong use of modularity at both a global and a local level. Globally, one of the



S s P A

CONSTRAINT SATISFACTION 85

most powerful ideas of logic is the clear distinction between axioms and rules of inference.
... Locally, axioms represent the ultimate in decomposition of knowledge. Each axiom is
taken as true, without regard to how it will interact with the others in the system. ...

Programming, on the other hand, is a metaphor in which interaction is primary. The
programmer is in direct control of just what will be used when, and the internal functioning
of any piece (subroutine) may have side effects which cause strong interactions with the
functioning of other pieces.

Viewed in this light, the constraint mechanism is more than the result of simply pasting together

facilities for representing facts and procedures. An individual constraint provides a. way of
integrating the declarative description of a relation with procedures for achieving it, and is thus
a more powerful tool than a simple statement of a fact. More globally, constraints achieve the
same sort of modularity as declarative systems, in which each fact can be stated independently.
Indeed, it is in the area of interaction that the current constraint mechanism falls down. Within
it, one cannot represznt such things as the masking off of a constraint, or a suggestion as to how
to satisfy a set of constraints.

One can view the evolution of the constraint mechanism in Thinglab as starting with a rather
strictly declarative representation, and moving toward the inclusion of more procedural sorts of
knowledge -- richer ways of describing the interaction of a constraint with its environment. In
the first implementations, constraints were represented using only an error expression, and
relaxation was the only means of satisfying them. In contrast, the current system attempts to
use the local procedures provided by the constraint for satisfying itself. Some further steps in
this evolution are proposed in Chapter 6, such as constraints involving time, and meta-
constraints.




Chapter 6 - Directions for Future Research

Introduction

This chapter is an exploration of the idea of building a programming language around the
notions of constraints and hierarchy that have been used in Thingl.ab. At this point, a
complete design does not exist, although many of the pieces are there. The reader is therefore
warned that the proposals discussed in this chapter are incomplete and untested, and some of
them will doubtless turn out to be unworkable.

The Next Version of Smalltalk

Discussion regarding the next major version of Smalltalk is currently under way in the Learning
Research Group. An important goal in the design of the new Smalltalk is to integrate many of
the language metaphors that LRG has investigated and implemented as subsystems over the
past several years, including search and information retrieval, simulation, constraints, objects as
editable documents, and others.

The constraint language described here is a trial design -- a step towards integrating constraints
into a full language. In the present documert, the author has adopted an evolutionary approach
that staris with the current Smalltalk messages and methods and Thinglab constraints, and
works forward from that.

Entities of the Constraint Language

Like Smalltalk and ThingLab, the constraint language would be object-oriented. As a starting
point, the language can use the current Thinglab inheritance and part-whole hierarchies.
Constraints would be built into the language in a fundamental way. A generalization of the
current constraint representation is proposed that allows constraints to be active or inactive, and
to involve time and sequencing. Later in this chapter, a way of representing Smalltalk methods
as constraints is described. This is an important step, as it serves to unify constraints with
standard programming constructs.

The reader should think of programming in the constraint language as being like building up
networks of constraints, as in the calculator example in Chapter 2. The syntax of the language
can involve linear text, as in other languages. However, when the expression 1.8%C + 32.0
appears in a piece of code, it would have the same semantics as the equivalent network of
constants, variables, and arithmetic operators. Thus, + is not merely an uninterpreted atomic




R R s P P Ay

DIRECTIONS FOR FUTURE RESEARCH 87

symbol; rather, it is the name of a complete object in its own right. This object would have
attachers that seek to merge with other objects (numbers), just like the Plus object in the
calculator examples. Also like the Plus object, it would know about its inverses.

Derivation of Procedural from Declarative Information

In ThingLab, the user must enter into the system both the declarative and procedural parts of a
constraint, where the declarative part is the constraint’s rule, and the procedural part is the set
of methods that can be invoked to satisfy the constraint. It is the user’s responsibility to ensure
that these parts correspond, and that the methods do what is expected.

In the constraint language, normally the user would enter the rule portion of a constraint only.
For example, to erier a constraint that a Centigrade temperature C corresponded to a
Fahrenheit temperature F, the user would need only enter the rule 1.8%C + 32.0 = F. The
system would take care of constructing the methods that the constraint could use to satisfy itself,
namely F ¢ 1.8%C +32.0 and C « (F - 32.0)/1.8.

In this case, the problem of constructing these methods may be solved using the one-pass
constraint satisfaction techniques. = The network implied by the above constraint rule
corresponds to the network constructed by the user in the temperature converter example in
Chapter 2. In that example, the constraint satisfier generated a plan for satisfying the
constraints when the user changed C or F by using the one-pass constraint satisfaction
techniques and the information owned by the arithmetic operators. These same techniques
would yield the desired constraint methods in the new language.

In other cases, the system would not be able to find a one-pass ordering for solving the
constraint satisfaction problem. Improved constraint satisfaction techniques would help with
this to some extent. However, there will doubtless be cases for which the compiler would be
unable to derive the procedural parts of the constraint from its rule. For example, unless it
were equipped with some rather sophisticated algebraic problem-solving techniques, the
constraint language compiler will probably be unable to derive Newton’s method for finding a

square root given only the constraint Y = X*X.

Therefore, the language should include facilities that allow the user to provide the system with
the procedural parts of the constraint. It would be nice if the system could check to see that
these procedures did what was expected of them. In general, this is the program verification
problem, and is hence quite hard. However, less ambitious kinds of checking could be
accomplished more readily. First, there could be limited compile-time checking. For read-only
methods, e.g. a print method, the compiler could check that the method didn’t alter any parts of
the object. For methods that did affect the object, the compiler could check that it altered only
the appropriate parts. Second, the compiler could have a debugging mode, in which it would



88 DIRECTIONS FOR FUTURE RESEARCH

insert a run-time check to see that a constraint was satisfied after a user-supplied method had
been invoked. After a constraint had been used for a while, the checks could be removed.

Virtual Parts

As discussed in Chapter 3, Smalltalk makes a strong distinction between the insides and the
outsides of an object. The internal aspects of an object are its class, and its instance fields and
their contents; its external aspects are the messages that it understands and its responses. In
Smalltalk one can thus have virtual fields. From the outside, it appears that an object has some
local storage that can be read and written via appropriate messages; but internally there is no
corresponding instance field.

To allow Thinglab to take advantage of this in describing part-whole hierarchies, a facility for
defining virtual parts should be added. It would be rather simple to implement. In analogy to
the class PartDescription, there would be a class VirtualPartDescription that would keep track of
the virtual part’s constraints. When a virtual part was involved in some constraints to be
satisfied, the object that owned the part would inform the constraint satisfier of its existence. In
generating code, the constraint satisfier would allocate a temporary variable for the virtual part
and initialize it; whenever the virtual part was referenced in a method, the constraint satisfier
would substitute a reference to the temporary for messages to the object asking for its part. As
described in Chapter 3, an example of such a virtual part might be the center of a rectangle,
which need not be explicitly stored in the instance, but can always be computed from the
rectangle’s corners.

Virtual parts will be used in the proposed way of dealing with constraints on time. However,
they would have other applications as well. First, they would provide a convenient way for
handling multiple representations of objects. For example, the multiply represented point
described in Chapter 3 could have its Cartesian representation as an actual part, and the
corresponding polar representation as a virtual part. From the outside, both parts would look
the same. Also, virtual parts would be useful in storing data more efficiently when so desired.
As an extreme example, consider the class HorizontallsoscelesTriangle described in Chapter 3.
As represented there, it has three superclass parts: a triangle, a horizontal triangle, and an
isosceles triangle. Each triangle has pointers to the three sides (which are shared). The sides in
turn have pointers to the endpoints, which finally hold the x and y coordinates. This object
could be stored very efficiently by having six integers as its actual parts, with all the other parts
being virtual.




577y

DIRECTIONS FOR FUTURE RESEARCH 89

Time

As a basis for a programming language, the most important missing aspect of the current
constraint mechanism is that it has no facilities for dealing with time. To remedy this, a
number of new mechanisms are proposed. These mechanisms are intended to be general
enough to describe both constraints on time in simulations, and constraints on sequencing and

iteration such as one might use in ordinary programming.

The semantics of constraints would be generalized. A constraint would have the following
form:

when condition [body]
The condition would be a Boolean-valued expression that determines when the constraint is
active. The body would consist of further constraints. The condition could be omitted; if so,
the condition when true would be implied.

As in Simula, an object would have active phases, separated by periods of inactivity. An active
phase of an object is called an event. An event happens in zero time (at least as far as any
temporal constraints are concerned). In the new language, one way in which an event could
occur would be for the value of the condition of one of the object’s constraints to become true.
Such events could be triggered either by external stimuli, such as the user’s pressing a button,
or by constraints whose conditions referenced a changing part, such as the value of a clock.

The object would have to satisfy all the other constraints in the body of the active constraint as
long as the constraint’s condition remained true. Using constraints as they have been defined
thus far, as soon as the condition became true, the object might have to change its state to
satisfy its constraints; but until the value of one of the conditions of its constraints changed, the
object’s state would not alter. However, a constraint could itself trigger a succession of events
with the use of temporal adverbs. A preliminary list of such adverbs is:

first - the object’s state when the constraint first becomes active

current - the object’s current state

next - the object’s state after the next event

last - the object’s state when the constraint first becomes inactive
These adverbs would be messages understood by all objects. Thus, next is a message meaning
“return your state after the next event". next would be something like a virtual part ("virtual
successor" might be a better description). Temporal adverbs could be used in paths, e.g.
poolGame eightBall location first. As long as the constraint’s condition held, the object
would take on the successive states that satisfied the next conditions described in the constraint’s
body. Thus, with the use of current and next, constraints could specify implicit looping. For
example, as long as the constraint

i next = i current + 1
were active, the value of i would continue to be incremented. [This technique for defining iterations is



90 DIRECTIONS FOR FUTURE RESEARCH

much like that used in the language Lucid (Ashcroft & Wadge 1977)]

If an object had several constraints that were active simultaneously, the next state of the object
would have to satisfy all of the constraints. Otherwise, if two objects that were not related by
constraints were active simultaneously, the events of each object would occur asynchronously.

There are various problems that need to be worked out in this formulation. For example, the
constraint satisfaction techniques would need to be augmented so that they could deal with
induction. Also, there are some timing issues in connection with asynchronous events. At the
moment, the author does not regard these problems as insoluble. However, none of this has
been implemented, so it remains to be seen if this is the case.

An Example of Constraints Involving Time

As a simple example of constraints involving time, a clock for use in building digital logic
simulations will be described.

Class LogicClock
Superclasses
LogicDevice
Part Descriptions
state:  a LogicState
active: a Boolean
Constraints
when active=true
[state first = off;
state next = state current inverse]
The driving force behind a logic simulation is the clock. As long as active is true, the logic
clock will provide a steady stream of timing pulses. [Note: inverse is a message understood by
instances of LogicState that means "if you are on, return off: if you are off, return on." The semicolon is used
here to separate a series of constraints that must hold simultaneously] One can picture an instance of
LogicClock in the following way:

state: off state: on state: off

next » next M next —fp—

Figure 6.1 - Successive states of a logic clock




e il

DIRECTIONS FOR FUTURE RESEARCH 91

The initial state of the clock is off. This state has a virtual successor (that object obtained
by sending it the message nexf), whose state is on, and so forth.

Smalltalk Methods as Constraints

The above mechanisms for virtual parts and for constraints dealing with time provide a way in
which Smalltalk methods can be viewed as constraints. This is important, since it serves to
unify the constraint metaphor with the metaphor of Smalltalk programming. However, the
formulation to be presented is not the way that Smalltalk programs should eventually be
pictured; rather, it is an interim formulation to help make a bridge between the continuous
nature of constraints and the step-by-step nature of methods.

In Smalltalk-76, when an object receives a message, the mescage selector is matched against the
selectors of the object’s methods. If a match is found, the actual arguments of the message are
bound to the formal arguments of the method, and space is allocated for the temporary
variables. The code is then executed, causing further messages to be sent or assignments to be
made. A method may be viewed as a constraint in the following way: the object that has the
method should have a number of virtual parts, one with the same name as the selector, and
others with names corresponding to those of the formal parameters. There is a constraint whose
condition is that the virtual part that is the selector have the value true. The rule for this
constraint should accomplish the same thing as the old method. Also, it should specify that the
next value of the virtual part that is the selector be false, so that when the constraint becomes
active, it causes the desired effects and then turns itself off. To send a message to an object,
the actual arguments are placed in the corresponding virtual parts, and its virtual part that
corresponds to the desired selector is set to true. [Small point: these virtual parts should really be
regarded as virtual parts of the particular activation of an object, so that methods can be recursive.]

This formulation can handle the current message-method behavior, but is actually somewhat
more general. Interesting results may be obtained by not automatically turning the constraint
off, thus allowing a number of methods to be active simultaneously. This notion of control
should be thought of in analogy to digital logic circuits: there is a "control line” (i.e., the virtual
part that represents the selector) that can be turned on and off. As long as the control line is
on, a device (method) is active. Many devices can be connected to a control line; a device may
manage the control lines of other sub-devices.




92 DIRECTIONS FOR FUTURE RESEFARCH

The logic clock definition can be re-written as follows:

Class LogicClock
Superclasses
Logic Device
Part Descriptions
state:  a LlogicState
Methods
active
[state first = off;
state next = state current inverse]
The LogicClock should be thought of as having a virtual part active. The clock is turned
on by someone invoking the method named active. [In these examples, acrive will be a method that
starts up an object’s default activity. Thus in this case, the default activity of a clock is to tick]

A Rocket Ship

As another example of the use of this scheme, consider a simulated rocket. The rocket will

have a local time frame, represented by a Clock object. [Many of the parts and constraints of the rocket
ought to be inherited from a more general class such as PhysicalObject, but that is not the point of this example]

Class Clock
Superclasses
Object
Part Descriptions
time: a Time
dt: a TimeChange
Methods
active
[time first = 0;
time next = time current + dt]




DIRECTIONS FOR FUTURE RESEARCH 93

Class Rocket
Superclasses
Object
Part Descriptions
location: a Point
velocity: a Velocity
acceleration: an Acceleration
heading: a Direction
mass: a Mass
thrust: a Force
clock: a Clock
Methods
coast
[thrust = 0.0]
fullSpeedAhead
[thrust = 1000.0]
show | icon ﬂ
[icon = [thrust>0> [/ ] J
screen showlcon: icon at: location]
active

[clock active;
location next = location current + (velocity*clock dt);
velocity next = velocity current + (acceleration*clock dt);
acceleration = heading*thrust/mass]

testFlight
[location first = screen center;
heading first = up;
time first = 0.0;
velocity first = 0.
mass = 1.0e6;
clock dt = 0.001;
self show;
self fullSpeed Ahead;
self active]

0;

The active method applies the laws of physics to the rocket, and simultaneously starts the
clock ticking. The testFlight method sets up constraints that will initialize the rocket’s state,
and also invokes active.




94 DIRECTIONS FOR FUTURE RESEARCH

An instance of Rocket could be created and tested by executing:
r ¢ Rocket new.
when button down
[r testflight].
As long as the button was held down, the rocket would fly.

Meta-Constraints

ThingLab currently uses certain kinds of constraints that specify how other constraints are to be
processed; however, they are represented and used in an ad hoc manner. In the new language,
meta-constraints would be constraints in their own right. The methods of these constraints
would send messages to the satisfier, rather than to the object whose constraints were being
satisfied. For example, a meta-constraint that a part be fixed would tell the cconstraint satisfier
to leave that part alone. Other things that could be expressed in a natural wéy with the use of
meta-constraints include specifying which method should be used to satisfy a constraint (if there
is a choice); masking off a given constraint; indicating that a constraint is only a preference
rather than a requirement; establishing partial orderings on preferences; explicitly representing
the additional information used in constructing a method that does not uniquely determine the
state of a part; and specifying heuristics as to what to try next in planning a constraint
satisfaction method.

Since meta-constraints would themselves be constraints, there could be meta-meta-constraints,
and so on. For example, given an inherited meta-constraint deleting another inherited
(ordinary) constraint, one could include a meta-meta-constraint that deleted the deletion.
However, use of this facility should probably be kept to a minimum in the interest of the sanity
of the programmer.

Views

ThingLab has some facilities that support multiple views of an object. These facilities fall into
two categories. First, the Thinglab user interface includes a menu of the different ways in
which an object can depict itself. Second, the constraint mechanism allaws the user to define
two different representations of an object, and put a constraint on them that keeps them in
coordination. For example, one can represent a point in both Cartesian and polar coordinates,
and use a constraint to keep the two representations consistent. Similarly, one can define
multiple views of an object to aid in constraint satisfaction, as in the quadratic example in
Chapter 2 or the voltage divider in Chapter 5. [See also the discussion of the constraint language of
Steele and Sussman in Chapter 1, and the Views example in Chapter 2. Picture transforms are a kind of view in

common use in graphics systems. An early Al system that used multiple views was Merlin (Moore & Newell 1973).
Views also play a prominent role in KRL (Bobrow & Winograd 1977a)]




s s R S |

DIRECTIONS FOR FUTURE RESEARCH 95

There are, however, many questions that remain to be explored in this area. As presently
implemented, the two kinds of multiple views described above are rather different. An object
depicts itself on the screen procedurally -- there is a sequence of messages that it sends that
causes bits to be changed on the bitmap display, but there is no separate object that
corresponds to the picture as such. In the case of the point, however, there are really two
objects. To make these cases fundamentally the same, ways of making pictures be actual objects
should be investigated. Work on this problem is currently under way in the Learning Research
Group. [Eventually, one might want to make the picture be a virtual object, in analogy with virtual parts; but its

semantics should be as described.]

Another area for research concerns views that need not be always in coordination. Consider
two views on a flip flop: as a logic device, and as an electronic circuit. Viewed as a logic
device, the flip flop is fairly simple. When describing its state, one talks in terms of things
being on or off Viewed as an electronic circuit, it is more complex. It is composed of
transistors, resistors, and so forth; in this case, its state will involve voltages, currents, and such.
One can introduce constraints that relate the two representations -- for example, a constraint
that a logic state of off must correspond to a voltage between 0 and 2, while for a logic state of
on the voltage must be between 3 and 5. However, one might not want both views to be active
at all times. When simulating the logic behavior of a device, the electrical representation could
be turned off (perhaps by employing when conditions on the constraints that relate the two
views). However, if one became interested in timing considerations, these electrical properties
could be turned on again. These questions are also related to the use of part-whole hierarchies.
For example, one might have the amplifier module of a radio described in terms of a simple
relation between its input and output signals that holds under normal conditions, and also in
terms of the details of the circuit. When appropriate, the simple model could be used; but
when its conditions of applicability were violated (e.g., a drop in the power supply voltage or an
input signal that was too large), the detailed representation could be used.

Such investigations might also yield a much cleaner view of what happens when a picture is
edited and the depicted object is updated correspondingly. Consider the bar chart example in
Chapter 2. When the user was in the midst of editing the text of one of the numbers, the
constraint relating the number to the height of the bar was temporarily violated; only when the
accept command was issued was the bar’s height updated. Permission to temporarily violate the
constraint is currently embedded in the methods of the text editor; the proposed investigations
may provide ways of describing and reasoning about such things more formally. Another
problem of this sort concerns one process that provides a view on another dynamically changing
process. What happens when the viewing process can’t keep up?

Another interesting area to be explored concerns cascaded views. In 3-d graphics work, picture
transforms are often represented as 4x4 matrices. When a picture is to be subjected to a series
of transforms, typically the transformation matrices are multiplied together in advance. In the




96 DIRECTIONS FOR FUTURE RESEARCH

same way, successive views could be cascaded; regarding a view as a kind of constraint, this
amounts to converting a network of constraints into a single constraint.

Views and Hierarchy

In his essay The Architecture of Complexity [Simon 1969], Herbert Simon describes what he calls
nearly decomposable systems.

In hierarchic systems, we can distinguish between the interactions among subsystems, on
the one hand, and the interactions within subsystems--that is, among the parts of those
subsystems--on the other. The interactions at the different levels may be, and often will be,
of different orders of magnitude. In a formal organization there will generally be more
interaction, on the average, between two employees who are members of the same
department than between two employees from different departments. In organic substances,
intermolecular foices will generally be weaker than molecular forces, and molecular forces
weaker than nuclear forces.

In a rare gas, the intermolecular forces will be negligible compared to those binding the
molecules--we can treat the individual particles, for many purposes, as if they were
independent of each other. We can describe such a system as decomposable into the
subsystems comprised of the individual particles. As the gas becomes denser, molecular
interactions become more significant. But over some range, we can treat the decomposable
case as a limit and as a first approximation. We can use a theory of perfect gases, for
example, to describe approximately the behavior of actual gases if they are not too dense.
As a second approximation, we may move to a theory of nearly decomposable systems, in
which the interactions among the subsystems are weak but not negligible.

At least some kinds of hierarchic systems can be approximated successfully as nearly
decomposable systems. The main theoretical findings from the approach can be summed
up in two propositions: (a) in a nearly decomposable system, the short-run behavior of each
of the component subsystems is approximately independent of the short-run behavior of the
other components; (b) in the long run, the behavior of any one of the components depends
in only an aggregate way on the behavior of the other components.

In terms of the constraint language, there should be ways of viewing a complex part as a much
simpler object. Dually, from within a part, there should be ways of viewing the influences of
the environment in an aggregate way. As a very simple example, consider the thermometers
example in Chapter 2. The Thermometers object has a part that is an instance of
TemperatureConverter. From the outside, it should be possible to view the
TemperatureConverter as a unit: the Times and Plus constraints, the constants, and their
connectivity can all be collapsed into a single constraint. There is no need for the
Thermometers object to know anything about the internal construction of its part. From within
the TemperatureConverter, the outside environment impinges only at the two attachers, which
in this case are connected to the thermometers. The TemperatureConverter could plan a way of
satisfying its internal constraints for any state of its attachers, and synthesize a single constraint
that embodies this view.

As a more complex example, in simulating planets orbiting the sun, from the outside each




e e Ry

DIRECTIONS FOR FUTURE RESEARCH 97

planet can be approximated as a point mass. From the point of view of an individual planet,
the influence of its environment can be summarized as a set of forces. As a good
approximation, the environment is simply the sun; the attractions of the other planets are much
weaker by comparison.

Some Implementation Considerations

Initially, the constraint language (and the next version of Smalltalk as well) could be
implemented in Smalltalk-76. Eventually, however, the underlying environment could be
changed to take advantage of the features of the new language. Some considerations of this sort
are discussed in this section.

Storage Management

Suppose that the only kinds of direct pointers allowed in the system were pointers from a whole
to its parts, or from an object to its successor (in a list, or its temporal successor as in the next
message described previously). Further, suppose that all sharing of direct pointers had to be
described by merges. Any other sort of reference would be stored as a path. If this were done,
then the system could easily determine how many direct pointers there were to a given object.
Storage management could be done without reference counting or garbage collection.

The disadvantage of this scheme is of course that the system would have to spend more time
following paths. However, Smalltalk currently spends a considerable portion of its time on
reference counting; and in the end, the new scheme might come out ahead. Also, specialized
hardware could speed things up greatly. Aside from these considerations, this scheme has
significant advantages in terms of control for constraint satisfaction purposes.

Parallelism

As noted in Chapter 5, in the current Thinglab the constraint satisfier could easily notice at
compile-time when it is permissible for several constraints to be satisfied in parallel. In the
proposed language, parallelism (or at least pseudo-parallelism) would be needed when two or
more independent objects were active simultaneously. Therefore, one of the promising
directions for future research would be to experiment with running the new language on a
multiprocessor machine. The parallelism would involve an interesting mixture of compile-time
and run-time techniques. Some of the parallelism could be completely planned at compile-time,
with the constraint satisfier automatically generating code that told the machine which steps
could be done in parallel, and when the various parallel forks had to rejoin. Other sorts of
parallelism could be unravelled only at run-time, for example, the parallelism implied by several
when conditions that depend on user-controlled input devices.




Bibliography

[Ashcroft & Wadge 1977] Ashcroft, E. A, and W. W. Wadge, "Lucid, a Nonprocedural
Language with Iteration," Communications of the ACM, July 1977, pp. 519-526.

[Bobrow & Winograd 1977a] Bobrow, Daniel G., and Terry Winograd, "An Overview of KRL,
A Knowledge Representation Language”, Cognitive Science, V. 1, No. 1, 1977.

[Bobrow & Winograd 1977b] Bobrow, Daniel G., Terry Winograd, and the KRL research
group, "Experience with KRL-0: One Cycle of a Knowledge Representation Language”,
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, 1977, pp.
213-222.

[Borning 1977] Borning, Alan, "Thinglab -- An Object-Oriented System for Building
Simulations Using Constraints”, Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, 1977, pp. 497-498.

[Brachman 1976] Brachman, Ronald, What’s in a Concept: Structural Foundations for Semantic
Networks, BBN Report No. 3433, Bolt Beranek and Newman, Cambridge, Mass, October
1976.

[Bundy 1978] Bundy, Alan, "Will it Reach the Top? Prediction in the Mechanics World,"
Artificial Intelligence 10 (1978), pp. 129-146.

[Dahl, Myhrhaug, & Nygaard 1970] Dahl, Ole-Johan, Bjorn Myhrhaug, and Kristen Nygaard,
Common Base Language, Norwegian Computing Center Publication S-22, Oslo, Norway,
October 1970.

[Dahl & Nygaard 1966] Dahl, Ole-Johan, and Kristen Nygaard, "SIMULA -- An ALGOL-
Based Simulation Language," Communications of the ACM, September 1966, pp. 671-677.

[de Kleer 1975] de Kleer, Johan, Qualitative and Quantitative Knowledge in Classical Mechanics,
MIT Al Lab Technical Report AI-TR-352, December 1975.

[de Kleer & Sussman 1978] de Kleer, Johan, and Gerald J. Sussman, Propagation of Constraints
Applied to Circuit Synthesis, MIT Al Lab Memo 485, September 1978.

[Doyle 1977] Doyle, Jon, Truth Maintenance Systems for Problem Solving, M.S. Thesis, MIT,
Cambridge, Mass., 1977.

[Elcock et al 1971] Elcock, E. W. et al, "ABSET, a Programming Language Based on Sets:




—

BIBLIOGRAPHY 99

Motivation and Examples,” in B. Meltzer and D. Michie (eds.), Machine Intelligence 6,
Edinburgh: Edinburgh University Press, 1971, pp. 467-492.

[Fikes 1970] Fikes, Richard, "REF-ARF: A System for Solving Problems Stated as Procedures",
Artificial Intelligence, V. 1 No. 1, Spring 1970, pp. 27-120.

[Goldberg & Robson 1979] Goldberg, Adele, and Dave Robson, "A Metaphor for User
Interface Design,” Proceedings of the Twelfth Hawaii International Conference on System
Sciences, V. I, 1979, pp. 148-157.

[Hewitt 1976] Hewitt, Carl, Viewing Control Structures as Patterns of Passing Messages, MIT Al
Lab Memo 410, December 1976.

[Ingalls 1978] Ingalls, Daniel H. H., "The Smalltalk-76 Programming System: Design and
Implementation,” Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, Tucson, Arizona, January 1978, pp. 9-16.

[Kahn 1978] Kahn, Kenneth M., Dynamic Graphics using Quasi Parallelism, MIT Al Lab Memo
480, June 1978.

[Kay 1972a] Kay, Alan, "A Personal Computer for Children of all Ages", Proceedings of the
ACM National Conference, August 1972.

[Kay 1972b] Kay, Alan, "A Dynamic Medium for Creative Thought", Proceedings of National
Council of Teachers of English Conference, November 1972.

[Kay & Goldberg 1977] Kay, Alan, and Adele Goldberg, "Personal Dynamic Media", IEEE
Computer, March 1977, pp. 31-4l.

[Kay 1977] Kay, Alan, "Microelectronics and the Personal Computer”, Scientific American,
September 1977, pp. 230-244.

[Liskov er al. 1977] Liskov, B. H., A. Snyder, R. Atkinson, and C. Shaffert, "Abstraction
Mechanisms in CLU," Communications of the ACM, August 1977.

[Moore & Newell 1973] Moore, J., and Newell, A., "How Can Merlin Understand?", in L.
Gregg (ed.), Knowledge and Cognition, Baltimore, Md.: Lawrence Erlbaum Associates, 1973.

[Newell & Simon 1972] Newell, Allen, and Herbert Simon, Human Problem Solving, Englewood
Cliffs, N.J.: Prentice-Hall, 1972.

[Rieger & Grinberg 1977] Rieger, Chuck, and Milt Grinberg, "The Declarative Representation
and Procedural Simulation of Causality in Physical Mechanisms", Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, 1977, pp. 250-256.




100 BIBLIOGRAPHY

[Sacerdoti 1975] Sacerdoti, Earl D., "The Nonlinear Nature of Plans", Proceedings of the Fourth
International Joint Conference on Artificial Intelligence, 1975, pp. 206-214.

[Simon 1969] Simon, Herbert A., "The Architecture of Complexity,” in The Sciences of the
Artificial, Cambridge: MIT Press, 1969.

[Stallman & Sussman 1977] Stallman, Richard M., and Gerald J. Sussman, "Forward Reasoning
and Dependency-Directed Backtracking In a System for Computer-Aided Circuit Analysis,"”
Artificial Intelligence 9 (1977), pp. 135-196.

[Steele & Sussman 1978] Steele, Guy L., and Gerald J. Sussman, "Constraints,” MIT Al Lab
Memo 502, November 1978.

[Sussman & Stallm2n 1975] Sussman, Gerald J., and Richard M. Stallman, "Heuristic
Techniques in Computer-Aided Circuit Analysis,” IEEE Transactions on Circuits and
Systems, Vol. CAS-22 (11), November 1975.

[Sutherland 1963] Sutherland, Ivan E., Sketchpad: A Man-Machine Graphical Communication
System, Ph.D. thesis, MIT, Cambridge, Mass., 1963.

[Tate 1977] Tate, Austin, "Generating Project Networks"”, Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, 1977, pp. 888-893.

[Wilkes 1964] Wilkes, M. V., "Constraint-Type Statements in Programming Languages,”
Communications of the ACM, V. 7 No. 10, October 1964, pp. 587-588.

[Winograd 1975] Winograd, Terry., "Frame Representations and the Declarative/Procedural
Controversy,” in Bobrow & Collins (eds.), Representation and Understanding: Studies in
Cognitive Science, New York: Academic Press (1975).

[Woods 1975] Woods, W. A., "What’s in a Link: Foundations for Semantic Networks,” in
Bobrow & Collins (eds.), Representation and Understanding: Studies in Cognitive Science,
New York: Academic Press (1975).

[Wulf, London & Shaw 1976] Wulf, W. A, R. London, and M. Shaw, "An Introduction to the
Construction and Verification of Alphard Programs,” IEEE Transactions on Sofiware
Engineering, SE-2, 1976, pp. 253-264.

[Yonezawa & Hewitt 1977] Yonezawa, Akinori, and Carl Hewitt, "Modelling Distributed
Systems”, Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
1977, pp. 370-376.




